اثرات سطوح مختلف شوری بر عملکرد و برخی خصوصیات فیزیولوژیک ارقام مختلف لوبیا چیتی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه کشاورزی، دانشکده فنی و مهندسی، دانشگاه پیام نور، تهران، ایران.

چکیده

به منظور بررسی اثر سطوح مختلف شوری بر عملکرد و برخی خصوصیات فیزیولوژیک ارقام مختلف لوبیا چیتی، آ‌زمایشی بصورت اسپلیت پلات در قالب طرح کاملا تصادفی در سه تکرار در سال 2022 در گلخانه تحقیقاتی دانشگاه پیام نور مرکز گندمان (استان چهار محال و بختیاری) به اجرا در آمد. عامل اول چهار سطح شوری، شامل S0 (2 دسی‌زیمنس بر متر (محلول هوگلند بعنوان شاهد))، S1 (10 دسی‌زیمنس بر متر)، S2 (20 دسی‌زیمنس بر متر) و S3 (30 دسی‌زیمنس بر متر)، حاصل از کلرید سدیم (NaCl) و کلرید‌کلسیم (CaCL2) به ترتیب با نسبت 20 به 1 مولی در محلول هوگلند) و چهار رقم لوبیا چیتی شامل: کوشا، صالح، غفار و تلاش به عنوان عامل دوم بکار رفتند. با توجه به نتایج بدست آمده مشاهده گردید که در کلیه ارقام مورد ارزیابی، سطوح تنش شوری موجب کاهش میزان صفات محتوای کلروفیل، عملکرد بیولوژیک، شاخص برداشت و عملکرد دانه و در مقابل موجب افزایش صفات محتوای کارتنوئید، غلظت پرولین و درصد پروتئین دانه گردید. ابا توجه به نتایج این پژوهش، مشاهده شد که رقم کوشا علاوه بر کسب بیشترین میزان عملکرد دانه (3450 کیلوگرم در هکتار) در سطح شوری شاهد (S0)، در تعدیل اثرات تنش شوری نیز، موفق‌تر از سایر ارقام عمل نموده و در بالاترین سطح تنش شوری (S3)، با میانگین عملکرد دانه 1470 کیلوگرم در هکتار، بطور معنی‌داری، بیشترین عملکرد دانه را به نام خود ثبت نمود؛ در مقابل رقم تلاش با میانگین عملکرد دانه 680 کیلوگرم در هکتار، عملکرد ضعیفی از خود به نمایش گذاشت.

کلیدواژه‌ها

موضوعات


پرنده، سارا.، زمانی، غلامرضا.، سیاری، محمد حسن.، و قادری، محمد قادر. (۱۳۹۳). ارزیابی اثر سیلیسیم بر صفات فیزیولوژی، کیفی و کمی لوبیا در تنش شوری. نشریة پژوهشهای حبوبات ایران، 5(2)، 70-57. https://doi.org/10.22067/ijpr.v1393i2.47004
دست­نشان، شکوفه.، و سبکدست، منیژه. (1398). ارزیابی میزان تحمل برخی ژنوتیپ­های لوبیا به شوری. مجله پژوهشنامه اصلاح گیاهان زراعی، 11 (32)،197-184. http://dx.doi.org/10.29252/jcb.11.32.184
شاهرخیان، زهره.، نوری امام زاده، محمد رضا.، دانش­شهرکی، عبد­الرزاق.، طباطبایی، سید حسن.، و شاه­نظری، علی. (1400). تاثیر کاربرد آب شور در مراحل رشد رویشی و زایشی بر عملکرد و بهره­وری آب در گیاه لوبیا قرمز. مجله پژوهش آب ایران، 15 (4)، 56-43. https://doi.org/10.22034/iwrj.2021.11181
عمادی، نوید ا... .، بلوچی، حمیدرضا.،  و جهانبین، شاهرخ. (1391). تولید گیاهان زراعی. اثر تنش خشکی و تراکم بوته بر عملکرد، اجزاء عملکرد و برخی خصوصیات ریخت­شناسی لوبیا چیتی رقم 16.S.O.C در منطقه یاسوج، مجله الکترونیک، 5(2)، 17-1. https://dorl.net/dor/20.1001.1.2008739.1391.5.2.1.2
محرم­نژاد، سجاد.، و ولیزاده، مصطفی. (1394). تغییرات میزان رنگ­دانه و فعالیت آنزیم­های آنتی­اکسیدان گیاهچه­های لوبیا چیتی (Phaseolus vulgaris L.) تحت تنش شوری. نشریه علمی  پژوهشی اکوفیزیولوژی گیاهان زراعی، 1(33)، 166-153.                        https://sanad.iau.ir/fa/Article/956540
مجنون­حسینی، ناصر. (1394). زراعت و تولید حبوبات (حبوبات در ایران). انتشارات جهاد دانشگاهی، تهران، ایران.   https://www.gisoom.com/book/11132693/
Afzal, M., Alghamdi, S. S., Migdadi, H. H., El-Harty, E., & Al-Faifi, S. A. (2022). Agronomical and Physiological Responses of Faba Bean Genotypes to Salt Stress. Agriculture, 12 (235), 1-13.           https://doi.org/10.3390/ agriculture12020235
Ahmad, P., & Umar, S. (2011). Oxidative Stress: Role of Antioxidants in Plants. Studium Press, New Delhi, India.
      https://www.abebooks.fr/Antioxidants-Oxidative-Stress-Management-Plants-Edited/7577938868/bd
Al Hinai, M. S., Ullah, A., Al-Rajhi, R. S., & Farooq, M. (2022). Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin. Environ. Experimental Botany, 193, 104687.               https://doi.org/10.1016/j.envexpbot.2021.104687
Arnon, D. I. (1940). Copper enzymes in isolated chlaroplats polyphenol oxidase. Journal Plant Physiology, 45, 100-114. https://doi.org/10.1104/pp. 24.1.1                                    
Atta, K., Mondal, S., Gorai, S., Singh, A. P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D. J., Mondal, S., Bhattacharya, S., Jha, U. C., & Jespersen, D. (2023). Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. Front. Plant Sciencce, 14,1241736. https://doi: 10.3389/fpls.2023.1241736
Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants’ Response Mechanisms to Salinity Stress. Plants, 12, 2253.      https://doi.org/10.3390/ plants12122253
Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, 38, 248-252. https://doi.org/10.1006/abio.1976.9999
Dast-neshan, Sh., & Sabokdast, m. (2018). Evaluation of tolerance of some bean genotypes to salinity. Crop breeding research journal, 11 (32), 184-197.    http://dx.doi.org/10.29252/jcb.11.32.184 [In Persian]
Dehdari, A., Rezai, A., & Mirmohammady Maibody, S. A. (2005). Salt tolerance of seedling and plant based on Ion contents and agronomic traits. Soil Science and Plant Analysis, 36, 2239-2253.           https://doi.org/10.1080/00103620500196622
Emadi, N., Balouchi, H. R., & Jahanbin, Sh. (2012). Effect of drought stress and plant density on yield, yield components and some morphological characters of pinto bean (cv.C.O.S16) in Yasouj region. Journal of Crop Production, 5 (2), 1-17.                       https://dorl.net/dor/20.1001.1.2008739.1391.5.2.1.2 [In Persian]
Ghassemi-Golezani, K., Nikpour-Rashidabad, N., & Zehtab-Salmasi, S. (2012). Effect of salinity on yield and yield components of pinto bean cultivars. International Journal of Plant, Animal and Environmental Sciences, 2 (2), 47-51.        https://www.researchgate.net/publication/235798272_Effect_of_salinity_on_yield_and_yield_components_of_pinto_bean_cultivars
Gross J. (1991). Pigments in Vegetables: Chlorophylls and Carotenoids. Van Nostrand Reinhold. USA. PP 1-37. https://link.springer.com/book/10.1007/978-1-4615-2033-7
Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical and Molecular Characterization. International Journal of Genomics, 68(3), 1-18.      
     https://doi.org/10.1155/2014/701596
Gupta, K. J., Stoimenova, M., & Kaiser, W.  M. (2005). In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO. in vitro and in situ. Journal Experimental Botany, 56, 2601–2609. https://doi.org/10.1093/jxb/eri252
Hannachi, S., Steppe, K., Eloudi, M., Mechi, L., Bahrini, I., & Van Labeke, M.C. (2022). Salt stress induced changes in photosynthesis and metabolic profiles of one tolerant (‘Bonica’) and one sensitive (‘Black beauty’) eggplant cultivars (Solanum melongena L.). Plants, 11(5), 590.              https://doi.org/10.3390/plants11050590
Hnilickova, H., Kraus, K., Vachova, P., & Hnilicka, F. (2021). Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants, 10, 845. https://doi: 10.3390/plants10050845.
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plant without soil. California Agricultural Experiment Station, 347, 1-32.                      https://openlibrary.org/books/OL25240089M
Majnoon-Hosseini, N. (2014). Cultivation and production of legumes (legumes in Iran). Jahad University Press, Tehran, Iran. https://www.gisoom.com/book/11132693/ [In Persian]
Moharramnejad, S., & Valizadeh, M. (2014). Changes in the amount of pigment and activity of antioxidant enzymes in pinto bean seedlings (Phaseolus vulgaris L.) under salt stress. Ecophysiology scientific research journal of agricultural plants, 1 (33), 166-153.                    https://sanad.iau.ir/fa/Article/956540 [In Persian]
Paquine, R., & Lechasser, P. (1997). Obsertins sur une methode dosage la libre. 145-160.                    https://doi.org/10.1139/b79-233
Parande, S., Zamani, Gh., Sayari, M. H., & Qadiri, M. Q. (2013). Evaluating the effect of silicon on the physiological, qualitative and quantitative traits of beans under salinity stress. Journal of Iranian Legume Research, 5 (2), 57-70.       https://doi.org/10.22067/ijpr.v1393i2.47004 [In Persian]
Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E., & Andersen, M. N. (2011). Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. Journal of Agronomy and Crop Science, 197, 348–360.                     https://doi.org/10.1111/j.1439-037X.2011.00473.x
Shahrokhian, Z., Nouri Imamzadeh, M. R., Danesh-Shahraki, A., Tabatabai, S. H., & Shah-Nazari, A. (2020). The effect of saline water application in the vegetative and reproductive stages on yield and water efficiency in red bean plant. Iranian Water Research Journal, 15 (4), 56-43.                     https://doi.org/10.22034/iwrj.2021.11181 [In Persian]
Soltani, A., Hammer, G. L., Torabi, B., Robertson, M. J., & Zeinali, E. (2006). Modeling chickpea growth and development: phenological development. Field Crops Research, 99 (1), 1-13.        https://doi.org/10.1016/j.fcr.2006.02.004
Stoeva, N., & Kaymakanova, M. (2008). Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). Journal of Central European Agriculture, 9(3), 385-391. https://hrcak.srce.hr/35369
Togatorop, E. R., Sari, D. N., & Handayani, S. (2023). Effect of different salinity stress on seedling growth in long bean (Vigna sinensis L.) genotypes. International Journal of Agricultural Technology 19(4), 1919-1928.
      http://www.ijat-aatsea.com/pdf/v19_n4_2023_July/37_IJAT_19(4)_2023_Togatorop,%20E.%20R.(52).pdf
Zahra, N., Al Hinai, M. S., Hafeez, M.B., Rehman, A., Wahid, A., Siddique, K.H., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology Biochemistry, 178, 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003
Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research, 115, 1–22. https://doi.org/10.1007/s11120-013-9813-6