ایمانی، سمیه.، حسن لی، امیر محمد.، فرخ نیا، اشکان.، جوادی، فاطمه.، و نجفی، محمد سعید. (1399). ارزیابی کارایی مدل WRF-Hydro در توسعه سامانههای پیشبینی و هشدار سیلاب (مطالعه موردی حوضه آبریز کشکان). تحقیقات منابع آب ایران،16(4)، 225-240. http://www.iwrr.ir/article_126926.html
ذاکری، زینب.، آزادی، مجید.، و صحرائیان، فاطمه. (1393). راستی آزمایی برونداد مدل WRF برای بارندگی بر روی کشور ایران در دوره فوریه تا انتهای می سال 2009. نشریه نیوار، 38(87-86)، 3-10. https://nivar.irimo.ir/article_13252.html
عبداللهی اسفندآبادی، مینا.، و فاضلی، میثم. (1398). ارزیابی دقت پیش بینی هواشناسی در برآورد سیل در حوضه های غرب کشور. سومین کنفرانس ملی هیدرولوژی ایران،تبریز. https://civilica.com/doc/950985
گودرزی، لیلا.، بنی حبیب، محمدابراهیم.، و غفاریان،. پروین. (1397). ارزیابی عملکرد مدل WRF در شبیه سازی بارش های سنگین. پژوهش های حفاظت آب و خاک (علوم کشاورزی و منابع طبیعی)، 25(1)، 242-229.
https://sid.ir/paper/156374/fa
Abdullahi Esfandabadi, M., & Fazli, M. (2018). Evaluation of the accuracy of meteorological forecast in the estimation of floods in the western basins of the country. the third national hydrology conference of Iran, Tabriz. https://civilica.com/doc/950985 [In Persian]
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)–Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
Chen, C., Zhang, Q., Kashani, M. H., Jun, C., Bateni, S. M., Band, S. S., & Chau, K. W. (2022). Forecast of rainfall distribution based on fixed sliding window long short-term memory. Engineering Applications of Computational Fluid Mechanics, 16(1), 248-261. https://doi.org/10.1080/19942060.2021.2009374
Gochis, D. J., Yu, W., & Yates, D. N. (2015). The WRF-Hydro model technical description and user’s guide, version 3.0. NCAR Tech. National Center for Atmospheric Research, 120. http://www.ral.ucar.edu/projects/wrf_hydro
Gsella, a., de Meij, A., Kerschbaumer, A., Reimer, E., Thunis, P., & Cuvelier, C. (2014). Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmospheric Environment, 89, 797–806. https://doi.org/10.1016/j.atmosenv.2014.03.019
Guderzi, L., Bani Habib, M., Ghafarian. P. (2017). Evaluation of WRF model performance in simulating heavy rainfall. Water and soil conservation research (agricultural sciences and natural resources), 25(1), 229-242 https://sid.ir/paper/156374/fa [In Persian]
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
Imani, S., Hasan Lee, A., Farrokhnia, A., Javadi, F., & Najafi, M.(2021). Evaluating the efficiency of WRF-Hydro model in the development of flood forecasting and warning systems (case study of Kashkan watershed). Iran Water Resources Research, 16(4). http://www.iwrr.ir/article_126926.html [In Persian]
Liu, Y., Chen, Y., Chen, O., Wang, J., Zhuo, L., Rico-Ramirez, M. A., & Han, D. (2021). To develop a progressive multimetric configuration optimisation method for WRF simulations of extreme rainfall events over Egypt. Journal of Hydrology, 598, 126237. https://doi.org/10.1016/j.jhydrol.2021.126237
Liu, Y., Zhao, Q., Yao, W., Ma, X., Yao, Y., & Liu, L. (2019). Short-term rainfall forecast model based on the improved BP–NN algorithm. Scientific reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-56452-5
Ni, L., Wang, D., Singh, V. P., Wu, J., Wang, Y., Tao, Y., & Zhang, J. (2020). Streamflow and rainfall forecasting by two long short-term memory-based models. Journal of Hydrology, 583, 124296. https://doi.org/10.1016/j.jhydrol.2019.124296
Patel, P., Ghosh, S., Kaginalkar, A., Islam, S., & Karmakar, S. (2019). Performance evaluation of WRF for extreme flood forecasts in a coastal urban environment. Atmospheric Research, 223, 39-48. https://doi.org/10.1016/j.atmosres.2019.03.005
Pearce, W., Holmberg, K., Hellsten, I., & Nerlich, B. (2014). Climate change on Twitter: Topics, communities and conversations about the 2013 IPCC Working Group 1 report. PloS one, 9(4), e94785. https://doi.org/10.1371/journal.pone.0094785
Rogelis, M. C., & Werner, M. (2018). Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas. Hydrology and Earth System Sciences, 22(1), 853-870. https://doi.org/10.5194/hess-22-853-2018
Ronda, R. J., Steeneveld, G. J., Heusinkveld, B. G., Attema, J. J., & Holtslag, A. A. (2017). Urban finescale forecasting reveals weather conditions with unprecedented detail. Bulletin of the American Meteorological Society, 98, 2675–2688. https://doi.org/10.1175/BAMS-D-16-0297.1
Seddighi, H., & Seddighi, S. (2020). How much the Iranian government spent on disasters in the last 100 years? A critical policy analysis. Cost effectiveness and resource allocation, 18(1), 1-11. https://doi.org/10.1186/s12962-020-00242-8
Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Journal of Computational Physics, 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
Skamarock, W., Klemp, J., Dudhi, J., Gill, D., Barker, D., Duda, M., Huang, X.Y., Wang, W., & Powers, J. (2008). A Description of the Advanced Research WRF Version 3. Technical Report June National Center for Atmospheric Research Boulder, Colorado, USA. http://dx.doi.org/10.5065/D68S4MVH
Zabel, F., & Mauser, W. (2013). 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrology and Earth System Sciences, 17(5), 1705-1714. https://doi.org/10.5194/hess-17-1705-2013
Zakari, Z., Azadi, M., & Sahraian, F. (2013). Verification of the output of the WRF model for rainfall over Iran in the period from February to the end of May 2009. Newar, 38(8786), 10-3. https://nivar.irimo.ir/article_13252.html [In Persian]
Zhao, Q., Liu, Y., Ma, X., Yao, W., Yao, Y., & Li, X. (2020). An improved rainfall forecasting model based on GNSS observations. IEEE Transactions on Geoscience and Remote Sensing, 58(7), 4891-4900. 10.1109/TGRS.2020.2968124
Zhao, Q., Liu, Y., Yao, W., & Yao, Y. (2021). Hourly rainfall forecast model using supervised learning algorithm. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-9. 10.1109/TGRS.2021.3054582
El Afandi, G., Morsy, M., & El Hussieny, F. (2013). Heavy rainfall simulation over sinai peninsula using the weather research and forecasting model. Int. J. Atmos. Sci, 11, 241050. http://dx.doi.org/10.1155/2013/241050.