Three-Dimensional porous media as a novel approach for stilling basin optimization: An experimental comparison with solid elements

نوع مقاله : مقاله پژوهشی

نویسندگان

1 , Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

2 Department of Civil Engineering, Faculty of Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.

3 Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

چکیده

Objective: The purpose of this research is to experimentally investigate and compare the effects of solid and porous baffle blocks and roughness elements on hydraulic jump characteristics downstream of an ogee spillway, aiming to optimize stilling basin design for reduced length and enhanced energy dissipation.
 
Method: Experiments were conducted in a 10 m horizontal flume with an ogee spillway, testing various arrangements of solid (impermeable) and porous (permeable, Φ=0.25) cubic blocks (2.1 cm) as baffle blocks and bed roughness. Five discharges (5–17 L/s) corresponding to Froude numbers (Fr₁=4.58–5.75) were used, measuring sequent depths (y₁, y₂) and jump length (Lⱼ) with a point gauge and visual grid. A total of 157 runs compared configurations against a smooth-bed control. Baffle Block Configurations: Single-Row (full-width bar, double-block with central gap, triple-block with two gaps); Double-Row (two rows spaced 2.1 cm apart); Stepped Co-Flow (downstream row twice the height of upstream); Stepped Opposing-Flow (upstream row twice the height of downstream). Bed Roughness Configurations: Row-wise (transverse rows spaced 2.1 cm or 6 cm); Staggered (checkerboard/offset pattern); Zigzag (dense interlocking pattern); Combined Roughness (alternating rows of solid and porous cubes).
 
Results: All configurations reduced sequent depth ratio (y₂/y₁) and jump length (Lⱼ) compared to the classical jump. Porous elements outperformed solid ones: porous baffle blocks achieved 16–43% Lⱼ reduction (vs. 12–29% for solid), and porous roughness 7–47% (vs. 5–35% for solid). Optimal setups included double-row porous baffles, zigzag porous roughness, and row-wise (6 cm spacing) porous/combined roughness. Porous media enhanced energy dissipation via internal shear, jet interactions, and turbulence, leading to up to 36% shorter relative jump length (Lⱼ/y₂) than USBR standards.
 
Conclusions: Porous appurtenances provide a superior, novel approach for stilling basin optimization, enabling more compact, cost-effective designs through volumetric energy dissipation mechanisms beyond form drag. 

کلیدواژه‌ها

موضوعات


Adeli, A., Ahadiyan, J., Ghomeshi, M., & Fathi Moghadam, M. (2021). Experimental study of two-phase air-water flow parameters in hydraulic jumps with vegetated rough bed. Journal of Ecohydrology, 8(3), 763–775. https://doi.org/10.22059/ije.2021.327831.1528
Ahadian, J., & Varshosaz, A. (2018). Effect of the floating sphere objects flexible bearing length on the characteristic of the hydraulic jump. Journal of Water and Soil Conservation, 25(1), 297–308. https://doi.org/10.22069/jwsc.2018.12965.2762
Ahadiyan, J., Abbasi Chenari, S., Azizi Nadian, H., Katopodis, C., Valipour, M., Sajjadi, S. M., & Omidvarinia, M. (2024). Sustainable systems engineering by CFD modeling of lateral intake flow with flexible gate operations to improve efficient water supply. International Journal of Sediment Research, 39(4), 629–642. https://doi.org/10.1016/j.ijsrc.2024.05.003
Ahadiyan, J., Hakami, M., Shafaei Bajestan, M., & Sajadi, S. M. (2024). Laboratory investigation of the effect of a submerged jet in a wavy bed with a gradually diverging cross-section on the characteristics of asymmetric hydraulic jump. Modares Civil Engineering Journal, 24(1), 151–160. http://mcej.modares.ac.ir/article-16-70953-en.html
Alikhani, A., Behrozi-Rad, R., & Fathi-Moghadam, M. (2010). Hydraulic jump in stilling basin with vertical end sill. International Journal of Physical Sciences, 5(1), 25–29. https://www.researchgate.net/publication/242233290_Hydraulic_jump_in_stilling_basin_with_vertical_end_sill
Bélanger, J. B. (1841). Notes sur l’Hydraulique. Ecole Royale des Ponts et Chaussées, Paris, France. https://doi.org/10.1051/lhb/2009072
Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896–909. https://doi.org/10.1016/j.expthermflusci.2011.01.009
Chaudary, Z. A., & Sarwar, M. K. (2014). Rehabilitated Taunsa Barrage: Prospects and concerns. Science. Technology and Development, 33(3), 127–131.                       https://docsdrive.com/pdfs/std/std/2014/127-131.pdf
Eloubaidy, A., Al-Baidhani, J., & Ghazali, A. (1999). Dissipation of hydraulic energy by curved baffle blocks. Pertanika Journal of Science & Technology, 7(1), 69–77. https://core.ac.uk/download/pdf/42990757.pdf
Frizell, K., & Svoboda, C. (2012). Performance of Type III stilling basins—Stepped spillway studies. 2nd International Seminar on Dam Protection Against Overtopping, US Bureau of Reclamation, Denver, CO, USA. https://www.researchgate.net/publication/309432371
Goel, A. (2008). Design of stilling basin for circular pipe outlets. Canadian Journal of Civil Engineering, 35(12), 1365–1374. https://doi.org/10.1139/L08-084
Habibzadeh, A., Loewen, M. R., & Rajaratnam, N. (2012). Performance of baffle blocks in submerged hydraulic jumps. Journal of Hydraulic Engineering, 138(10), 902–908. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000580
Hajialigol, S., Ahadiyan, J., Sajjadi, S. M., Hazi, M. A., Chadee, A. A., Nadian, H. A., & Kirby, J. T. (2024). Experimental analysis of turbulence measurements in a new dissipator structural (cross beams) in abruptly expanding channels. Results in Engineering, 21, 101829. https://doi.org/10.1016/j.rineng.2024.101829
Hajialigol, S., Ahadiyan, J., Sajjadi, M., Rita Scorzini, A., Di Bacco, M., & Shafai Bejestan, M. (2021). Cross-beam dissipators in abruptly expanding channels: Experimental analysis of flow patterns. Journal of Irrigation and Drainage Engineering, 147(11), 06021012. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001622
Khedri Mirghaed, P., & Ahadiyan, J. (2018). Effect of suspended anchored spherical energy dissipator blocks on hydraulic jump characteristics. Modares Civil Engineering Journal, 18(5), 61–70. http://mcej.modares.ac.ir/article-16-12907-en.html
Macián-Pérez, J. F., García-Bartual, R., Huber, B., Bayon, A., & Vallés-Morán, F. J. (2020). Analysis of the flow in a typified USBR II stilling basin through a numerical and physical modeling approach, Water, 12(1), 227. https://doi.org/10.3390/w12010227
Maleki, S., & Fiorotto, V. (2021). Hydraulic jump stilling basin design over rough beds. Journal of Hydraulic Engineering, 147(5), 04020087. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001847
Mansour, B. G. S., Nashed, N. F., & Mansour, S. G. S. (2004). Model study to optimise the hydraulic performance of the New Naga Hammadi Barrage stilling basin. In Proceedings of the World Water and Environmental Resources Congress 2001.                            https://doi.org/10.1061/40569(2001)461
Murzyn, F., & Chanson, H. (2009). Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environmental Fluid Mechanics, 9(2), 143–159. https://doi.org/10.1007/s10652-008-9070-2
Nikmehr, S., & Aminpour, Y. (2020). Numerical simulation of hydraulic jump over rough beds. Periodica Polytechnica Civil Engineering, 64(2), 396–407. https://doi.org/10.3311/PPci.15508
Peterka, A. J. (1984). Hydraulic design of stilling basins and energy dissipators. Water Resources Technical Publications, Bureau of Reclamation, United States. https://books.google.com/books/about/Hydraulic_Design_of_Stilling_Basins_and.html?id=qa-qoAEACAAJ
Pillai, N. N., Goel, A., & Dubey, A. K. (1989). Hydraulic jump type stilling basin for low Froude numbers. Journal of Hydraulic Engineering, 115(7), 989–994. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:7(989)
Sajjadi, S. M., Esmaeilzadeh-Feridani, F., Ahadiyan, J., & Kiyani, A. M. (2025). Numerical study of energy loss and S-type hydraulic jump length using cross beams as roughness in sudden expansion. Advanced Technologies in Water Efficiency, 5(1), 78–97. https://doi.org/10.22126/atwe.2025.11522.1148
Salahi, K., Ahadiyan, J., Yu-hong Zeng, Azizi, H. N., & Sajjadi, S. M. (2024). Laboratory investigation of the effect of particle and vegetation roughness on changes in drag force in an open channel. Journal of Environmental Accounting and Management, 12(3), 221–230. https://doi.org/10.5890/JEAM.2024.09.001
Sharoonizadeh, S., Ahadiyan, J., Fathi Moghadam, M., Sajjadi, M., & Di Bacco, M. (2022). Experimental investigation of the characteristics of hydraulic jump in expanding channels with a water jet injection system. Journal of Hydraulic Structures, 7(4), 58–75. https://doi.org/10.22055/jhs.2022.40233.1203
Sayyadi, K., Heidarpour, M., & Ghadampour, Z. (2022). Effect of bed roughness and negative step on characteristics of hydraulic jump in rectangular stilling basin. Shock and Vibration, 1722065. https://doi.org/10.1155/2022/1722065
Tahmasbipour, M., Azizi Nadian, H., Ahadiyan, J., Oliveto, G., Sajjadi, S. M., & Kiyani, A. M. (2024). Experimental investigation of T-jump stabilization using water jets and sinusoidal corrugated beds. Water, 16(23), 3513. https://doi.org/10.3390/w16233513
Tiwari, H. L., & Goel, A. (2016). Effect of impact wall on energy dissipation in stilling basin. KSCE Journal of Civil Engineering, 20(2), 463–467. https://doi.org/10.1007/s12205-015-0132-3
Verma, D. V. S., & Goel, A. (2003). Development of efficient stilling basins for pipe outlets. Journal of Irrigation and Drainage Engineering, 129(3), 194–200.                            https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(194)
Wang, H., & Chanson, H. (2015). Experimental study of turbulent fluctuations in hydraulic jumps. Journal of Hydraulic Engineering, 141(11), 04015010.                                          https://doi.org/10.1061/(ASCE)HY.1943-7900.0001030
Zaffar, M. W., & Hassan, I. (2023a). Hydraulic investigation of stilling basins of the barrage before and after remodelling using FLOW-3D. Water Supply, 23(2), 796–820. https://doi.org/10.2166/ws.2023.013
Zaffar, M. W., & Hassan, I. (2023b). Numerical investigation of hydraulic jump for different stilling basins using FLOW-3D. AQUA – Water Infrastructure, Ecosystems and Society, 72(7), 1320–1343. https://doi.org/10.2166/aqua.2023.082
Zulfiqar, A., & Kaleem, M. M. (2015). Historical background, rehabilitation and numerical modeling of Taunsa Barrage. In Proceedings of the 36th IAHR World Congress, The Hague, Netherlands. https://www.iahr.org/library/world?pid=295