Adeli, A., Ahadiyan, J., Ghomeshi, M., & Fathi Moghadam, M. (2021). Experimental study of two-phase air-water flow parameters in hydraulic jumps with vegetated rough bed. Journal of Ecohydrology, 8(3), 763–775. https://doi.org/10.22059/ije.2021.327831.1528
Ahadian, J., & Varshosaz, A. (2018). Effect of the floating sphere objects flexible bearing length on the characteristic of the hydraulic jump. Journal of Water and Soil Conservation, 25(1), 297–308. https://doi.org/10.22069/jwsc.2018.12965.2762
Ahadiyan, J., Abbasi Chenari, S., Azizi Nadian, H., Katopodis, C., Valipour, M., Sajjadi, S. M., & Omidvarinia, M. (2024). Sustainable systems engineering by CFD modeling of lateral intake flow with flexible gate operations to improve efficient water supply. International Journal of Sediment Research, 39(4), 629–642. https://doi.org/10.1016/j.ijsrc.2024.05.003
Ahadiyan, J., Hakami, M., Shafaei Bajestan, M., & Sajadi, S. M. (2024). Laboratory investigation of the effect of a submerged jet in a wavy bed with a gradually diverging cross-section on the characteristics of asymmetric hydraulic jump. Modares Civil Engineering Journal, 24(1), 151–160. http://mcej.modares.ac.ir/article-16-70953-en.html
Alikhani, A., Behrozi-Rad, R., & Fathi-Moghadam, M. (2010). Hydraulic jump in stilling basin with vertical end sill. International Journal of Physical Sciences, 5(1), 25–29. https://www.researchgate.net/publication/242233290_Hydraulic_jump_in_stilling_basin_with_vertical_end_sill
Bélanger, J. B. (1841). Notes sur l’Hydraulique. Ecole Royale des Ponts et Chaussées, Paris, France. https://doi.org/10.1051/lhb/2009072
Chachereau, Y., & Chanson, H. (2011). Free-surface fluctuations and turbulence in hydraulic jumps. Experimental Thermal and Fluid Science, 35(6), 896–909. https://doi.org/10.1016/j.expthermflusci.2011.01.009
Chaudary, Z. A., & Sarwar, M. K. (2014). Rehabilitated Taunsa Barrage: Prospects and concerns. Science. Technology and Development, 33(3), 127–131. https://docsdrive.com/pdfs/std/std/2014/127-131.pdf
Eloubaidy, A., Al-Baidhani, J., & Ghazali, A. (1999). Dissipation of hydraulic energy by curved baffle blocks. Pertanika Journal of Science & Technology, 7(1), 69–77. https://core.ac.uk/download/pdf/42990757.pdf
Frizell, K., & Svoboda, C. (2012). Performance of Type III stilling basins—Stepped spillway studies. 2nd International Seminar on Dam Protection Against Overtopping, US Bureau of Reclamation, Denver, CO, USA. https://www.researchgate.net/publication/309432371
Goel, A. (2008). Design of stilling basin for circular pipe outlets. Canadian Journal of Civil Engineering, 35(12), 1365–1374. https://doi.org/10.1139/L08-084
Habibzadeh, A., Loewen, M. R., & Rajaratnam, N. (2012). Performance of baffle blocks in submerged hydraulic jumps. Journal of Hydraulic Engineering, 138(10), 902–908. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000580
Hajialigol, S., Ahadiyan, J., Sajjadi, S. M., Hazi, M. A., Chadee, A. A., Nadian, H. A., & Kirby, J. T. (2024). Experimental analysis of turbulence measurements in a new dissipator structural (cross beams) in abruptly expanding channels. Results in Engineering, 21, 101829. https://doi.org/10.1016/j.rineng.2024.101829
Hajialigol, S., Ahadiyan, J., Sajjadi, M., Rita Scorzini, A., Di Bacco, M., & Shafai Bejestan, M. (2021). Cross-beam dissipators in abruptly expanding channels: Experimental analysis of flow patterns. Journal of Irrigation and Drainage Engineering, 147(11), 06021012. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001622
Khedri Mirghaed, P., & Ahadiyan, J. (2018). Effect of suspended anchored spherical energy dissipator blocks on hydraulic jump characteristics. Modares Civil Engineering Journal, 18(5), 61–70. http://mcej.modares.ac.ir/article-16-12907-en.html
Macián-Pérez, J. F., García-Bartual, R., Huber, B., Bayon, A., & Vallés-Morán, F. J. (2020). Analysis of the flow in a typified USBR II stilling basin through a numerical and physical modeling approach, Water, 12(1), 227. https://doi.org/10.3390/w12010227
Maleki, S., & Fiorotto, V. (2021). Hydraulic jump stilling basin design over rough beds. Journal of Hydraulic Engineering, 147(5), 04020087. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001847
Mansour, B. G. S., Nashed, N. F., & Mansour, S. G. S. (2004). Model study to optimise the hydraulic performance of the New Naga Hammadi Barrage stilling basin. In Proceedings of the World Water and Environmental Resources Congress 2001. https://doi.org/10.1061/40569(2001)461
Murzyn, F., & Chanson, H. (2009). Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environmental Fluid Mechanics, 9(2), 143–159. https://doi.org/10.1007/s10652-008-9070-2
Nikmehr, S., & Aminpour, Y. (2020). Numerical simulation of hydraulic jump over rough beds. Periodica Polytechnica Civil Engineering, 64(2), 396–407. https://doi.org/10.3311/PPci.15508
Peterka, A. J. (1984). Hydraulic design of stilling basins and energy dissipators. Water Resources Technical Publications, Bureau of Reclamation, United States. https://books.google.com/books/about/Hydraulic_Design_of_Stilling_Basins_and.html?id=qa-qoAEACAAJ
Pillai, N. N., Goel, A., & Dubey, A. K. (1989). Hydraulic jump type stilling basin for low Froude numbers. Journal of Hydraulic Engineering, 115(7), 989–994. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:7(989)
Sajjadi, S. M., Esmaeilzadeh-Feridani, F., Ahadiyan, J., & Kiyani, A. M. (2025). Numerical study of energy loss and S-type hydraulic jump length using cross beams as roughness in sudden expansion. Advanced Technologies in Water Efficiency, 5(1), 78–97. https://doi.org/10.22126/atwe.2025.11522.1148
Salahi, K., Ahadiyan, J., Yu-hong Zeng, Azizi, H. N., & Sajjadi, S. M. (2024). Laboratory investigation of the effect of particle and vegetation roughness on changes in drag force in an open channel. Journal of Environmental Accounting and Management, 12(3), 221–230. https://doi.org/10.5890/JEAM.2024.09.001
Sharoonizadeh, S., Ahadiyan, J., Fathi Moghadam, M., Sajjadi, M., & Di Bacco, M. (2022). Experimental investigation of the characteristics of hydraulic jump in expanding channels with a water jet injection system. Journal of Hydraulic Structures, 7(4), 58–75. https://doi.org/10.22055/jhs.2022.40233.1203
Sayyadi, K., Heidarpour, M., & Ghadampour, Z. (2022). Effect of bed roughness and negative step on characteristics of hydraulic jump in rectangular stilling basin. Shock and Vibration, 1722065. https://doi.org/10.1155/2022/1722065
Tahmasbipour, M., Azizi Nadian, H., Ahadiyan, J., Oliveto, G., Sajjadi, S. M., & Kiyani, A. M. (2024). Experimental investigation of T-jump stabilization using water jets and sinusoidal corrugated beds. Water, 16(23), 3513. https://doi.org/10.3390/w16233513
Tiwari, H. L., & Goel, A. (2016). Effect of impact wall on energy dissipation in stilling basin. KSCE Journal of Civil Engineering, 20(2), 463–467. https://doi.org/10.1007/s12205-015-0132-3
Verma, D. V. S., & Goel, A. (2003). Development of efficient stilling basins for pipe outlets. Journal of Irrigation and Drainage Engineering, 129(3), 194–200. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(194)
Wang, H., & Chanson, H. (2015). Experimental study of turbulent fluctuations in hydraulic jumps. Journal of Hydraulic Engineering, 141(11), 04015010. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001030
Zaffar, M. W., & Hassan, I. (2023a). Hydraulic investigation of stilling basins of the barrage before and after remodelling using FLOW-3D. Water Supply, 23(2), 796–820. https://doi.org/10.2166/ws.2023.013
Zaffar, M. W., & Hassan, I. (2023b). Numerical investigation of hydraulic jump for different stilling basins using FLOW-3D. AQUA – Water Infrastructure, Ecosystems and Society, 72(7), 1320–1343. https://doi.org/10.2166/aqua.2023.082
Zulfiqar, A., & Kaleem, M. M. (2015). Historical background, rehabilitation and numerical modeling of Taunsa Barrage. In Proceedings of the 36th IAHR World Congress, The Hague, Netherlands. https://www.iahr.org/library/world?pid=295