Assessment and provincial ranking of crop suitability via the OPLO–POCOD MCDM framework: case study of Wheat, Barley, and Sugar Beet

نوع مقاله : مقاله پژوهشی

نویسندگان

1 Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood,, Iran.

2 Department of Water & Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

3 Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology , Shahrood, Iran

4 Department of Water and Environmental E ngineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

5 Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of T echnology, Shahrood, Iran

چکیده

Objective: This study ranks Iranian provinces on their irrigated potential for wheat, barley, and sugar beet using a weighted multi-criteria framework that evaluates agronomic performance, water resources, and mechanization. It identifies provinces with comparative advantages, highlights mismatches with current cultivation, and offers guidance for reallocating cropping patterns to boost productivity and water-use efficiency.
 
Method: We built a weighted, normalized province-level decision matrix using six agronomic and water-related criteria and applied the OPLO–POCOD method to calculate each province’s Degree of Opportunity Loss and Percent of Opportunity Achieved for wheat, barley, and sugar beet. Using expert-derived weights, we produced crop-specific suitability rankings and compared them with current cultivation patterns to identify misallocations and opportunities for more water-efficient cropping.
 
Results: The OPLO–POCOD rankings show that humid and water-rich provinces (e.g., Mazandaran, Golestan, Khuzestan) have the strongest suitability for irrigated wheat, barley, and sugar beet, while arid southern provinces consistently underperform. Comparing these rankings with current cropping patterns reveals major misallocations, indicating substantial opportunities to shift cultivation toward high-scoring provinces to boost national returns and water productivity without increasing water use.
 
Conclusions: The study uses the OPLO–POCOD framework to rank Iran’s provinces for irrigated wheat, barley, and sugar beet based on agronomic performance, water use, and mechanization capacity, revealing clear spatial patterns of suitability. Comparing these rankings with current cropping areas highlights misallocations and actionable opportunities to improve national crop productivity, water efficiency, and net returns without increasing overall water use.

کلیدواژه‌ها

موضوعات


Abuzaid, A. S., Abbas, H. H., Mostafa, M. A., El Ghonamy, Y. K., Rebouh, N. Y., & Shokr, M. S. (2025). A comprehensive crop suitability assessment under modern irrigation system in arid croplands. PLOS ONE, 20(6), e0326183. https://doi.org/ 10.1371/journal.pone.0326183
Alijani, M., Feizabadi, Y., & Goudarzi, M. (2025). Comparative analysis of paddy cultivation sustainability through integrating eco-efficiency and best–worst method approaches. Journal of Agriculture and Food Research, 19, 101479. https://doi.org/10.1016/j.jafr.2024.101479
Azadi, H., & Baghernejad, M. (2018). Qualitative land suitability assessment and estimating land production potential for main irrigated crops in northern Fars province. Agriculture and Forestry, 64(4), 237–250. https://doi.org/10.17707/agricultforest.64.4.26
Bouman, B. A. M. (2007). A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems, 93(1-3), 43–60. https://doi.org/10.1016/j.agsy.2006.04.004
Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling & Software, 25(12), 1582–1591. https://doi.org/10.1016/j.envsoft.2010.06.001
Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, E. A., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European review. Science of the Total Environment, 573, 727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177
Ebrahimi Sirizi, M., Taghavi Zirvani, E., Esmailzadeh, A., Khosravian, J., Ahmadi, R., Mijani, N., Soltannia, R., & Jokar Arsanjani, J. (2023). A Scenario-Based Multi-Criteria Decision-Making Approach for Allocation of Pistachio Processing Facilities: A Case Study of Zarand, Iran. Sustainability, 15(20), 15054. https://doi.org/10.3390/su152015054
Esfahani, S. M. J., & Barikani, E. (2022). Ranking production units by integrating data envelopment analysis and multi-criteria decision-making: The case of potato-producing provinces in Iran. Iran Agricultural Research, 41(1), 49–60. https://doi.org/10.22099/iar.2022.42629.1473
Gurara, M. A. (2020). Evaluation of Land Suitability for Irrigation Development and Sustainable Land Management Using ArcGIS on Katar Watershed in Rift Valley Basin, Ethiopia. Journal of Water Resources and Ocean Science, 9(3), 56–63. https://doi.org/ 10.11648/j.wros.20200903.11
Kheyruri, Y., Neshat, A., Sharafati, A., & Hameed, A. S. (2024). Identifying the most effective climate parameters on crop yield in rain-fed agriculture and irrigated farming in Iran. Physics and Chemistry of the Earth, 103744. https://doi.org/10.1016/j.pce.2024.103744
Konikow, L. F., & Bredehoeft, J. D. (2020). Groundwater Resource Development: Effects and Sustainability. The Groundwater Project Publications, Ontario, Canada. https://doi.org/ 10.21083/978-1-7770541-4-4
Koopahi, M., Barikani, S. H. S., Asgari, M., & Shahbazi, H. (2008). Econometric estimates of scale economies in Iranian agriculture (Case study: Three Khorasan provinces). World Applied Sciences Journal, 5(3), 340-344. http://www.idosi.org/wasj/wasj5(3)/12.pdf
Madani, K. (2014). Water management in Iran: What is causing the looming crisis?. Journal of Environmental Studies and Sciences, 4(4), 315–328. https://doi.org/10.1007/s13412-014-0182-z
Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey. International Journal of Geographical Information Science, 20(7), 703–726.                          https://doi.org/10.1080/13658810600661508
Mendoza, G. A., & Martins, H. (2006). Multi-criteria decision analysis in natural resource management: A critical review of methods and new modelling paradigms. Forest Ecology and Management, 230(1-3), 1–22. https://doi.org/10.1016/j.foreco.2006.03.023
Moazzez, H., & Habibi, A. (2014). Optimization of agricultural products export with use of linear programming model in Mazandaran province. Indian Journal of Fundamental and Applied Life Sciences, 4(S4), 3219-3224. https://www.cibtech.org/sp.ed/jls/2014/04/JLS-380-S4-391-5.pdf
Nabiollahi, K., Kebonye, N. M., Molani, F., Tahari-Mehrjardi, M. H., Taghizadeh-Mehrjardi, R., Shokati, H., & Scholten, T. (2024). Assessment of Land Suitability Potential Using Ensemble Approaches of Advanced Multi-Criteria Decision Models and Machine Learning for Wheat Cultivation. Remote Sensing, 16(14), 2566. https://doi.org/10.3390/rs16142566
Pakrooh, P., & Kamal, M. A. (2023). Modeling the potential impacts of climate change on wheat yield in Iran: Evidence from national and provincial data analysis. Ecological Modelling, 110513. https://doi.org/10.1016/j.ecolmodel.2023.110513
Parmah, E., & Negaresh, H. (2014). Agroclimatic zoning of sugar beet in Kermanshah province using GIS. J. Biodiv. & Environ. Sci, 4(4), 345-354. https://innspub.net/agroclimatic-zoning-of-sugar-beet-in-kermanshah-province-using-gis/
Pooya, M. R., Hasankhani, A., Fathololomi, S., & Karimi Firozjaei, M. (2025). A spatial multi-criteria decision-making approach to evaluating homogeneous areas for rainfed wheat yield assessment. Water, 17, 1045. https://doi.org/10.3390/w17071045
Radmehr, A., Bozorg-Haddad, O., & Loáiciga, H. A. (2022). Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management. Scientific Reports, 12(1), 8406. https://doi.org/10.1038/s41598-022-12194-5
Rashidi, F., & Sharifian, S. (2022). A comparative analysis of three multi-criteria decision-making methods for land suitability assessment. Environmental Monitoring and Assessment, 194(9), 657. https://doi.org/10.1007/s10661-022-10259-6
Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., & Rodell, M. (2015). Quantifying renewable groundwater stress with GRACE. Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349
Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., & Lo, M. H. (2018). Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. https://doi.org/10.1038/s41586-018-0123-1
Scanlon, B. R., Faunt, C. C., Longuevergne, L., Reedy, R. C., Alley, W. M., McGuire, V. L., & McMahon, P. B. (2012). Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proceedings of the National Academy of Sciences, 109(24), 9320–9325. https://doi.org/10.1073/pnas.1200311109
Sheikh, R., & Senfi, S. (2024). A Novel Opportunity Losses-Based Polar Coordinate Distance (OPLO-POCOD) Approach to Multiple Criteria Decision-Making. Journal of Mathematics, 2024, 8845886. https://doi.org/10.1155/2024/8845886
U.S. Department of Agriculture, F. A. S. (2025). Grain: World Markets and Trade.  Foreign agricultural service Publications, Washington- DC, United States.                         https://esmis.nal.usda.gov/publication/grain-world-markets-and-trade
Zandi, I., & Lotfata, A. (2025). Evaluating solar power plant sites using integrated GIS and MCDM methods: A case study in Kermanshah Province. Scientific Reports, 15, 87476. https://doi.org/10.1038/s41598-025-87476-9
Zwart, S. J., & Bastiaanssen, W. G. M. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 69(2), 115–133. https://doi.org/10.1016/j.agwat.2004.04.007