ملکزاده، مریم.، کاردار، سعید.، صائب، کیوان.، شعبانلو، سعید.، و تقوی، لعبت. (1397). پیشبینی تراز آب زیر زمینی با استفاده از مدلهای مادفلو، ماشین آموزش نیرومند و ویولت-ماشین آموزش نیرومند. مجله تحقیقات منابع آب ایران، 14(5) ، 501-496. https://www. wrr.ir/article_66468.html
Afruzi, A., Zare Abyaneh, H., & Abdolabadi, H. (2021). Local strategies to manage groundwater depletion under climate change scenarios—a case study: Hamedan-Bahar Plain (Iran).
Arabian Journal of Geosciences, 14(15), 1548.
http://dx.doi.org/10.1007/s12517-021-07773-1
Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., Daccache, A., Fogg, G. E., & Sadegh, M. (2022). Groundwater level modeling with machine learning: a systematic review and meta-analysis.
Water, 14(6), 949.
https://doi.org/10.3390/w14060949
Ahmed, H. U., Mostafa, R. R., Mohammed, A., Sihag, P., & Qadir, A. (2023). Support vector regression (SVR) and grey wolf optimization (GWO) to predict the compressive strength of GGBFS-based geopolymer concrete.
Neural Computing and Applications, 35(3), 2909-2926.
https://doi.org/10.1007/s00521-022-07724-1
Alizamir, M., Kazemi, Z., Kazemi, Z., Kermani, M., Kim, S., Heddam, S., Kisi, O., & Chung, I.-M. (2023). Investigating landfill leachate and groundwater quality prediction using a robust integrated artificial intelligence model: Grey wolf metaheuristic optimization algorithm and extreme learning machine.
Water, 15(13), 2453.
https://doi.org/10.3390/w15132453
Aman Jalili, A., Najarchi, M., Shabanlou, S., & Jafarinia, R. (2023). Multiobjective optimization of water resources in real time based on integration of NSGA-II and support vector machines.
Environ Sci Pollut Res, 30,16464–16475.
https://doi.org/10.1007/s11356-022-22723-4
Amiri, S., Rajabi, A., Shabanlou, S. Yosefvand, F., & Izadbakhsh, M.A. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model.
Earth Sci Inform, 16, 3227–3241.
https://doi.org/10.1007/s12145-023-01052-1
Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A., & Shabanlou, S. (2023) Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran.
Irrigation and Drainage, 72(3), 747–762.
https://doi.org/10.1002/ird.2794
Azizpour, A., Izadbakhsh, M. A., Shabanlou, S., Yosefvand, F., & Rajabi, A. (2021). Estimation of water level fluctuations in groundwater through a hybrid learning machine.
Groundwater for Sustainable Development, 15, 100687.
http://dx.doi.org/10.1016/j.gsd.2021.100687
Balali, H., & Kasbian Lal, F. (2022). Economic Valuation of Groundwater in Agriculture Sector (Case Study: Hamedan-Bahar Plain).
Journal of Agricultural Economics and Development, 36(1), 37-48.
https://doi.org/10.22067/jead.2022.72334.1079
Balogun, A.-L., Rezaie, F., Pham, Q. B., Gigović, L., Drobnjak, S., Aina, Y. A., Panahi, M., Yekeen, S. T., & Lee, S. (2021). Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms.
Geoscience Frontiers, 12(3), 101104.
https://doi.org/10.1016/j.gsf.2020.10.009
Band, S. S., Heggy, E., Bateni, S. M., Karami, H., Rabiee, M., Samadianfard, S., Chau, K.-W., & Mosavi, A. (2021). Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression.
Engineering Applications of Computational Fluid Mechanics, 15(1), 1147-1158.
http://dx.doi.org/10.1080/19942060.2021.1944913
Esmaeili, F., Shabanlou, S., & Saadat, M. (2021). A wavelet-outlier robust extreme learning machine for rainfall forecasting in Ardabil City, Iran.
Earth Sci Inform. 14, 2087–2100.
https://doi.org/10.1007/s12145-021-00681-8
Fallahi, M.M., Shabanlou, S., Rajabi, A., Yosefvand, F., & IzadBakhsh, M.A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer).
Appl Water Sci. 13(143).
https://doi.org/10.1007/s13201-023-01949-8
Gaur, S., Johannet, A., Graillot, D., & Omar, P. J. (2021). Modeling of groundwater level using artificial neural network algorithm and WA-SVR model.
Groundwater resources development and planning in the semi-arid region, Springer, Cham, New York Sity, United states.
https://dx.doi.org/10.1007/978-3-030-68124-1_7
Gharib, R., Heydari, M., Kardar, S., & Shabanlou, S. (2020). Simulation of discharge coefficient of side weirs placed on convergent canals using modern self-adaptive extreme learning machine.
Appl Water Sci, 10, 50.
https://doi.org/10.1007/s13201-019-1136-0
Ghobadi, A., Cheraghi, M., Sobhanardakani, S., Lorestani, B., & Merrikhpour, H. (2020). Hydrogeochemical characteristics, temporal, and spatial variations for evaluation of groundwater quality of Hamedan–Bahar Plain as a major agricultural region,
West of Iran. Environmental Earth Sciences, 79(18), 428.
https://link.springer.com/article/10.1007/s12665-020-09177-y
Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J.-D., & Ross, A. (2016). Integrated groundwater management.
Springer Nature, Cham, New York Sity, United states.
https://doi.org/10.1007/978-3-319-23576-9
Jalilian, A., Heydari, M., Azari, A., & Shabanlou, S. (2022). Extracting optimal rule curve of dam reservoir base on stochastic inflow.
Water Resour Manage, 36, 1763–1782.
https://doi.org/10.1007/s11269-022-03087-3
Kumar, D., Roshni, T., Singh, A., Jha, M. K., & Samui, P. (2020). Predicting groundwater depth fluctuations using deep learning, extreme learning machine and Gaussian process: a comparative study.
Earth Science Informatics, 13(4), 1237-1250.
https://link.springer.com/article/10.1007/s12145-020-00508-y
Levintal, E., Kniffin, M. L., Ganot, Y., Marwaha, N., Murphy, N. P., & Dahlke, H. E. (2023). Agricultural managed aquifer recharge (Ag-MAR)—a method for sustainable groundwater management: A review.
Critical Reviews in Environmental Science and Technology, 53(3), 291-314.
https://doi.org/10.1080/10643389.2022.2050160
Li, J., Lu, W., Wang, H., Fan, Y., & Chang, Z. (2020). Groundwater contamination source identification based on a hybrid particle swarm optimization-extreme learning machine.
Journal of Hydrology, 584, 124657.
https://doi.org/10.1016/j.jhydrol.2020.124657
Malekzadeh, M., Kardar, S., Saeb, K., Shabanlou, S., Taghavi, L. (2019). 'Prediction of Groundwater Level using MODFLOW, Extreme Learning Machine and Wavelet-Extreme Learning Machine Models.
Iran-Water Resources Research, 14(5), 496-501. (In Persian)
https://www.iwrr.ir/article_66468.html
Mallick, J., Naikoo, M. W., Talukdar, S., Ahmed, I. A., Rahman, A., Islam, A. R. M. T., Pal, S., Ghose, B., & Shashtri, S. (2022). Developing groundwater potentiality models by coupling ensemble machine learning algorithms and statistical techniques for sustainable groundwater management.
Geocarto International, 37(25), 7927-7953.
http://dx.doi.org/10.1080/10106049.2021.1987535
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2023). A hybrid machine learning model for modeling nitrate concentration in water sources.
Water, Air, & Soil Pollution, 234(11), 721.
http://dx.doi.org/10.1007/s11270-023-06745-3
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A combination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm.
Groundwater for Sustainable Development, 24, 101062.
https://doi.org/10.1016/j.gsd.2023.101062
Mirarabi, A., Nassery, H., Nakhaei, M., Adamowski, J., Akbarzadeh, A., & Alijani, F. (2019). Evaluation of data-driven models (SVR and ANN) for groundwater-level prediction in confined and unconfined systems.
Environmental Earth Sciences, 78, 1-15.
https://link.springer.com/article/10.1007%2Fs12665-019-8474-y
Moghadam, R.G., Yaghoubi, B., Rajabi, A., Shabanlou, S., & Izadbakhsh, M.A. (2022). Evaluation of discharge coefficient of triangular side orifices by using regularized extreme learning machine.
Appl Water Sci, 12, 145.
https://doi.org/10.1007/s13201-022-01665-9
Mohammed, K.S., Shabanlou, S., Rajabi, A., Yosefvand, F., & Izadbakhsh, M.A. (2023). Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS.
Appl Water Sci, 13, 54 (2023).
https://doi.org/10.1007/s13201-022-01861-7
Norouzi Khatiri, K., Nematollahi, B., Hafeziyeh, S., Niksokhan, M. H., Nikoo, M. R., & Al-Rawas, G. (2023). Groundwater management and allocation models: a review.
Water, 15(2), 253.
https://doi.org/10.3390/w15020253
Panahi, J., Mastouri, R., & Shabanlou, S. (2022). Insights into enhanced machine learning techniques for surface water quantity and quality prediction based on data pre-processing algorithms.
J Hydroinf, 24(4), 875–897.
https://doi.org/10.2166/hydro.2022.022
Panahi, M., Sadhasivam, N., Pourghasemi, H. R., Rezaie, F., & Lee, S. (2020). Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR).
Journal of Hydrology, 588, 125033.
https://doi.org/10.1016/j.jhydrol.2020.125033
Rafieemehr, H., Kozegarkaleji, L. (2021). Analyzing spatiotemporal relationship between land use changes and groundwater quantity in Hamadan north plains.
Environmental Sciences, 19(1), 259-276.
https://doi.org/10.52547/envs.29307
Roshni, T., Mirzania, E., Hasanpour Kashani, M., Bui, Q.-A. T., & Shamshirband, S. (2022). Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level.
Acta Geophysica, 70(4), 1885-1898.
https://doi:10.1007/s11600-022-00826-3
Shabanlou, S. (2018). Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels.
Flow Measurement and Instrumentation, 59, 63-71.
https://doi.org/10.1016/j.flowmeasinst.2017.11.003
Shahbazi, M., Zarei, H., & Solgi, A. (2023). De-noising groundwater level modeling using data decomposition techniques in combination with artificial intelligence (case study Aspas aquifer).
Applied Water Science, 13(4), 88.
https://doi.org/10.1007/s13201-023-01885-7
Singh, A., Patel, S., Bhadani, V., Kumar, V., & Gaurav, K. (2024). AutoML-GWL: Automated machine learning model for the prediction of groundwater level.
Engineering Applications of Artificial Intelligence, 127, 107405.
http://dx.doi.org/10.1016/j.engappai.2023.107405
Sun, J., Hu, L., Li, D., Sun, K., & Yang, Z. (2022). Data-driven models for accurate groundwater level prediction and their practical significance in groundwater management.
Journal of Hydrology, 608, 127630.
http://dx.doi.org/10.1016/j.jhydrol.2022.127630
Tang, W., Zhao, X., Motagh, M., Bi, G., Li, J., Chen, M., Chen, H., & Liao, M. (2022). Land subsidence and rebound in the Taiyuan basin, northern China, in the context of inter-basin water transfer and groundwater management.
Remote Sensing of Environment, 269, 112792.
https://doi.org/10.1016/j.rse.2021.112792
Tao, H., Hameed, M. M., Marhoon, H. A., Zounemat-Kermani, M., Heddam, S., Kim, S., Sulaiman, S. O., Tan, M. L., Sa’adi, Z., & Mehr, A. D. (2022). Groundwater level prediction using machine learning models: A comprehensive review.
Neurocomputing, 489, 271-308.
https://doi.org/10.1016/j.neucom.2022.03.014