Aman Jalili, A., Najarchi, M., Shabanlou, S., & Jafarinia, R. (2023). Multiobjective optimization of water resources in real time based on integration of NSGA-II and support vector machines. Environ Sci Pollut Res, 30, 16464–16475. https://doi.org/10.1007/s11356-022-22723-4
Amiri, S., Rajabi, A., Shabanlou, S., Yosefvand, F., & Izadbakhsh, M.A. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Sci Inform, 16, 3227–3241. https://doi.org/10.1007/s12145-023-01052-1
Jalilian, A., Heydari, M., Azari, A., & Shabanlou, S. (2022). Extracting optimal rule curve of dam reservoir base on stochastic inflow. Water Resour Manage, 36, 1763–1782. https://doi.org/10.1007/s11269-022-03087-3
Gharib, R., Heydari, M., Kardar, S., & Shabanlou, S. (2020). Simulation of discharge coefficient of side weirs placed on convergent canals using modern self-adaptive extreme learning machine. Appl Water Sci, 10, 50. https://doi.org/10.1007/s13201-019-1136-0
Azad, A., Manoochehri, M., Kashi, H., Farzin, S., Karami, H., Nourani, V., & Shiri, J. (2019). Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. Journal of Hydrology, 571, 214-224. http://dx.doi.org/10.1016/j.jhydrol.2019.01.062
Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A., & Shabanlou, S. (2023) Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage, 72(3), 747–762. https://doi.org/10.1002/ird.2794
Basak, A., Mengshoel, O.J., Kulkarni, C., Schmidt, K., Shastry, P., & Rapeta, R. (2017). Optimizing the decomposition of time series using evolutionary algorithms: soil moisture analytics. The genetic and evolutionary computation conference, Berlin, Germany. http://dx.doi.org/10.1145/3071178.3071191
Fallahi, M.M., Shabanlou, S., Rajabi, A., Yosefvand, F., & IzadBakhsh, M.A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Appl Water Sci, 13(143). https://doi.org/10.1007/s13201-023-01949-8
Hammad, M., Shoaib, M., Salahudin, H., Baig, M. A. I., Khan, M. M., & Ullah, M. K. (2021). Rainfall forecasting in upper Indus basin using various artificial intelligence techniques. Stochastic Environmental Research and Risk Assessment, 35(1-2), 1-23. https://link.springer.com/article/10.1007/s00477-021-02013-0
Hasani, F., and Shabanlou, S. (2021). Weighted regularized extreme learning machine to model the discharge coefficient of side slots. Flow Measurement and Instrumentation, 79, 101955. https://doi.org/10.1016/j.flowmeasinst.2021.101955
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501. https://doi.org/10.1016/j.neucom.2005.12.126
Mahmodian, A.R., Rajabi, A., Izadbakhsh, M.A., & Shabanlou, S. (2019). Evaluation of side orifices shape factor using the novel approach self-adaptive extreme learning machine Model. Earth Syst. Environ, 5, 925–935. https://doi.org/10.1007/s40808-019-00579-x
Maqsood, I., Khan, M.R., & Abraham, A. (2004). An ensemble of neural networks for weather forecasting. Neural Computing & Applications, 13(2), 112-122. https://doi.org/10.1007/s00521-004-0413-4
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2023). A Hybrid Machine Learning Model for Modeling Nitrate Concentration in Water Sources. Water, Air, & Soil Pollution, 234(11), 1-22. http://dx.doi.org/10.1007/s11270-023-06745-3
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A combination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm. Groundwater for Sustainable Development, 24, 101062. http://dx.doi.org/10.1016/j.gsd.2023.101062
Mehr, A. D., Nourani, V., Khosrowshahi, V. K., & Ghorbani, M. A. (2019). A hybrid support vector regression–firefly model for monthly rainfall forecasting. International Journal of Environmental Science and Technology, 16(1), 335-346. http://dx.doi.org/10.1007/s13762-018-1674-2
Mekanik, F., Imteaz, M. A., Gato-Trinidad, S., & Elmahdi, A. (2013). Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11-21. https://doi.org/10.1016/j.jhydrol.2013.08.035
Mislan, H., Hardwinarto, S., & Sumaryono, M. A. (2015). Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan-Indonesia. Procedia Computer Science, 59, 142-151. https://doi.org/10.1016/j.procs.2015.07.528
Moghadam, R.G., Yaghoubi, B., Rajabi, A. Shabanlou, S., & Izadbakhsh, M.A. (2022). Evaluation of discharge coefficient of triangular side orifices by using regularized extreme learning machine. Appl Water Sci, 12, 145. https://doi.org/10.1007/s13201-022-01665-9
Nasseri, M., Asghari, K., & Abedini, M. J. (2008). Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications, 35(3), 1415-1421. https://doi.org/10.1016/j.eswa.2007.08.033
Poursaeid, M., Poursaeed, A.H., & Shabanlou, S. (2022). Study of water resources parameters using artificial intelligence techniques and learning algorithms: a survey. Appl Water Sci, 12, 156. https://doi.org/10.1007/s13201-022-01675-7
Poursaeid, M., Poursaeed, A.H., & Shabanlou, S. (2024). Water quality fluctuations prediction and Debi estimation based on stochastic optimized weighted ensemble learning machine. Process Safety and Environmental Protection, 188, 1160-1174. https://doi.org/10.1016/j.psep.2024.05.146
Riad, S., Mania, J., Bouchaou, L., & Najjar, Y. (2004). Rainfall-runoff model usingan artificial neural network approach. Mathematical and Computer Modelling, 40(7-8), 839-846. https://doi.org/10.1016/j.mcm.2004.10.012
Shabanlou, S. (2018). Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels. Flow Measurement and Instrumentation, 59, 63-71. https://doi.org/10.1016/j.flowmeasinst.2017.11.003
Shafiei, S., Najarchi, M., & Shabanlou, S. (2020). Prognostication of discharge coefficient of labyrinth weir using outlier robust extreme learning machine. Flow Measurement and Instrumentation, 71, 101681. https://doi.org/10.1016/j.flowmeasinst.2019.101681
Shirali, E., Shahbazi, A. N., Fathian, H., Zohrabi, N., & Hassan, E. M. (2020). Evaluation of WRF and artificial intelligence models in short-term rainfall, temperature and flood forecast (case study). Journal of Earth System Science, 129(1), 1-16. http://dx.doi.org/10.1007/s12040-020-01450-9
Xiang, Y., Gou, L., He, L., Xia, S., & Wang, W. (2018). A SVR–ANN combined model based on ensemble EMD for rainfall prediction. Applied Soft Computing, 73, 874-883. https://doi.org/10.1016/j.asoc.2018.09.018
Yang, J., & Zhang, Y. (2011). Alternating approximation algorithms for l1-problems in compress sensing. SIAM J. Sci. Comput, 33(1), 250-278. https://doi.org/10.1137/090777761
Zarei, S., Yosefvand, F., & Shabanlou, S. (2020). Discharge coefficient of side weirs on converging channels using extreme learning machine modeling method. Measurement, 152, 107321. https://doi.org/10.1016/j.measurement.2019.107321
Zhang, K., & Luo, M. (2015). Outlier-robust extreme learning machine for regression problems. Neurocomputing, 151, 1519-1527. https://doi.org/10.1016/j.neucom.2014.09.022