اسماعیلی، یوسف.، رجبی، احمد.، یوسفوند، فریبرز.، و شعبانلو، سعید. (1402). تخمین بارش درازمدت شهر بابلسر با استفاده از برنامهریزی بیان ژن بهینهیافته. نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، 13(2) ، 215-197. https://doi.org/10.22125/iwe.2022.162632
بذرافشان، ام البنین.، سلاجقه، علی.، مهدوی، محمد.، و فاتحی، احمد. (1393). بررسی کارآیی مدلهای هیبرید شبکه عصبی مصنوعی-استوکاستیک در پیشبینی خشکسالیهای هیدرولوژیکی با استفاده از آماره کاپا (مطالعه موردی: حوزه آبخیز رودخانه گاماسیاب). مجله علوم ومهندسی آبخیزداری ایران، 8(27)، 48-35. http://dorl.net/dor/20.1001.1.20089554.1393.8.27.5.8
سبزواری، فرحناز.، یعقوبی، بهروز.، و شعبانلو، سعید. (1402). کاربرد مدل هیبریدی شبکههای عصبی مصنوعی و الگوریتم کرم شبتاب برای پیشبینی مقدار جامدات محلول در آب رودخانه. مجله حفاظت منابع آب و خاک، 13(2)، 23-13. https://doi.org/10.30495/wsrcj.2023.71849.11356
علیدادی ده کهنه، صابر.، سلگی، اباذر.، شهنی دارابی، مهنوش.، و زارعی، حیدر. (2019). ارزیابی مدلهای ژنتیکی جهت مدلسازی جریان رودخانه.
نشریه علمی پژوهشی مهندسی آبیاری و آب ایران، 9(3)، 17-1.
https://doi.org/10.22125/iwe.2019.88628
AlidadiDehkohneh, S., Solgi, A., Shehni darabi, M., & Zarei, H. (2019). Evaluation of genetic models for river flow modeling. Irrigation and Water Engineering, 9(3), 1-17. https://www.doi.org/10.22125/iwe.2019.88628 (In Persian)
Aman Jalili, A., Najarchi, M., Shabanlou, S., & Jafarinia, R. (2023). Multiobjective optimization of water resources in real time based on integration of NSGA-II and support vector machines. Environ Sci Pollut Res, 30, 16464–16475. https://doi.org/10.1007/s11356-022-22723-4
Amiri, S., Rajabi, A., Shabanlou, S., Yosefvand, F., & Izadbakhsh, M.A. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Sci Inform, 16, 3227–3241. https://doi.org/10.1007/s12145-023-01052-1
Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A., & Shabanlou, S. (2023) Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage, 72(3), 747–762. https://doi.org/10.1002/ird.2794
Bazrafshan, O., Salajegheh, A., Mahdavi, M., & Fatehi, A. (2015). A Study of Efficiency of the Hybrid model Artificial Neural Network Models - Stochastic in Hydrological Drought Forecasting Using kappa Statistics (Case Study: Gamasiab Watershed Basin). Iranian Journal of Watershed Management Science and Engineering, 8(27), 35-48. http://dorl.net/dor/20.1001.1.20089554.1393.8.27.5.8 (In Persian)
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific model development, 7(3), 1247-1250. http://dx.doi.org/10.5194/gmd-7-1247-2014
Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific reports, 10(1), 3904. https://www.nature.com/articles/s41598-020-60698-9
Esmaeili, F., Shabanlou, S., & Saadat, M. (2021). A wavelet-outlier robust extreme learning machine for rainfall forecasting in Ardabil City, Iran. Earth Sci Inform, 14, 2087–2100. https://doi.org/10.1007/s12145-021-00681-8
Esmaeli, Y., rajabi, A., yosefvand, F., & shabanlou, S. (2022). Estimation of Long-Term Rainfall in Babolsar City by Using the Optimized Gene Expression Programming. Irrigation and Water Engineering, 13(2), 197-215. https://www.doi.org/ 10.22125/iwe.2022.162632 (In Persian)
Fallahi, M.M., Shabanlou, S., Rajabi, A., Yosefvand, F., & IzadBakhsh, M.A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Appl Water Sci, 13(143). https://doi.org/10.1007/s13201-023-01949-8
Guiamel, I. A., & Lee, H. S. (2020). Watershed modelling of the Mindanao River Basin in the Philippines using the SWAT for water resource management. Civil Engineering Journal, 6(4), 626-648. http://dx.doi.org/10.28991/cej-2020-03091496
Mahdavi, M., Fesanghary, M., & Damangir, E. (2007). An improved harmony search algorithm for solving optimization problems. Applied mathematics and computation, 188(2), 1567-1579. http://dx.doi.org/10.1016/j.amc.2006.11.033
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2023). A Hybrid Machine Learning Model for Modeling Nitrate Concentration in Water Sources. Water, Air, & Soil Pollution, 234(11), 1-22. http://dx.doi.org/10.1007/s11270-023-06745-3
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A combination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm. Groundwater for Sustainable Development, 24, 101062. http://dx.doi.org/10.1016/j.gsd.2023.101062
Moradi, E., Yaghoubi, B., & Shabanlou, S. (2023). A new technique for flood routing by nonlinear Muskingum model and artificial gorilla troops algorithm. Appl Water Sci , 13, 49. https://doi.org/10.1007/s13201-022-01844-8
Panahi, J., Mastouri, R., & Shabanlou, S. (2022) Insights into enhanced machine learning techniques for surface water quantity and quality prediction based on data pre-processing algorithms. J Hydroinf , 24(4), 875–897. https://doi.org/10.2166/hydro.2022.022
Rezaei, K., & Vadiati, M. (2020). A comparative study of artificial intelligence models for predicting monthly river suspended sediment load. Journal of Water and Land Development. 45(IV-VI),107-118. http://dx.doi.org/10.24425/jwld.2020.133052.
Sabzevari, F., Yaghoubi, B., & Shabanlou, S. (2023). Application of Hybrid Model of Artificial Neural Networks and Firefly Algorithm to Predict the Amount of TDS in River Water. Journal of Water and Soil Resources Conservation, 13(2), 13-23. https://doi.org/10.30495/wsrcj.2023.71849.11356 (In Persian)
Samadianfard, S., Jarhan, S., Salwana, E., Mosavi, A., Shamshirband, S., & Akib, S. (2019). Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), 1934. http://dx.doi.org/10.20944/preprints201905.0361.v1
Shabanlou, S. (2018). Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels. Flow Measurement and Instrumentation, 59, 63-71. https://www.doi.org/10.1016/j.flowmeasinst.2017.11.003
Xiang, X., Li, Q., Khan, S., & Khalaf, O. I. (2021). Urban water resource management for sustainable environment planning using artificial intelligence techniques. Environmental Impact Assessment Review, 86, 106515. http://dx.doi.org/10.1016/j.eiar.2020.106515