Adeloju, S.B., Khan, S., & Patti, A.F. (2021). Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. Appl. Sci. 11, 1926. https://doi.org/10.3390/app11041926
Alabool, H.M., Alarabiat, D., Abualigah, L., Heidari, A.A. (2021). Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput & Applic, 33, 8939–8980. https://doi.org/10.1007/s00521-021-05720-5
Amiri, S., Rajabi, A., Shabanlou, S., Yosefvand, F., & Izadbakhsh, M.A. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Sci Inform, 16, 3227–3241. https://doi.org/10.1007/s12145-023-01052-1
Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A., & Shabanlou, S. (2023) Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage, 72(3), 747–762. https://doi.org/10.1002/ird.2794
Bouchair, A., Yagoubi, B., & Makhlouf, S.A. (2022). A Cluster-Oriented Policy for Virtual Network Embedding in SDN-Enabled Distributed Cloud. International Journal of Computing and Digital Systems, 11(1), 365-353. https://dx.doi.org/10.12785/ijcds/120129
Chai, T., & Draxler, R.R. (2014) Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geoscientific Model Development, 7, 1247-1250. https://dx.doi.org/10.5194/gmd-7-1247-2014
Chen, J., Xin, B., Peng, Zh., Dou, L., & Zhang, J. (2009). Optimal contraction theorem for exploration–exploitation tradeoff in search and optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39(3), 680-691. https://dx.doi.org/10.1109/TSMCA.2009.2012436
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20, 273-297. https://dx.doi.org/10.1007/BF00994018
Debnath, R., & Takahashi, H. (2004). Kernel selection for the support vector machine. IEICE transactions on information and systems, 87(12), 2903-2904. https://www.researchgate.net/publication/220237100_Kernel_selection_for_the_support_vector_machine
Deng, W., Yao, R., Zhao, H.,Yang, X., &Li, G. (2019). A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput, 23, 2445–2462. https://doi.org/10.1007/s00500-017-2940-9
El Amri, A., M'nassri, S., Nasri, N., Nsir, H., & Majdoub, R. (2022). Nitrate concentration analysis and prediction in a shallow aquifer in central-eastern Tunisia using artificial neural network and time series modelling. Environmental Science and Pollution Research, 29(28), 43300-43318. https://doi.org/10.1007/s11356-021-18174-y
Elzain, H. E., Chung, S.Y., Park, K.H., Senapathi, V., Sekar, S., Sabarathinam, Ch., Hassan, M. (2021). ANFIS-MOA models for the assessment of groundwater contamination vulnerability in a nitrate contaminated area. Journal of Environmental Management, 286, 112162. https://doi.org/10.1016/j.jenvman.2021.112162
Esmaeili, F., Shabanlou, S., & Saadat, M. (2021). A wavelet-outlier robust extreme learning machine for rainfall forecasting in Ardabil City, Iran. Earth Sci Inform, 14, 2087–2100. https://doi.org/10.1007/s12145-021-00681-8
Fallahi, M.M., Shabanlou, S., Rajabi, A., Yosefvand, F., & IzadBakhsh, M.A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Appl Water Sci, 13(143). https://doi.org/10.1007/s13201-023-01949-8
Fried, J.J. (1975) Groundwater pollution. Elsevier Scientific Publishing Company, Amsterdam. https://www.scirp.org/reference/referencespapers?referenceid=102612
Hearst, M. A., Dumais, S.T., Osuna, E., Platt, J., & Scholkopf, B. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. https://Doi:10.1109/5254.708428
Heidari, A. A., Mirjalili, S.A., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future generation computer systems, 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2023). A hybrid machine learning model for modeling nitrate concentration in water sources. Water, Air, & Soil Pollution, 234(11), 721. https://doi.org/10.1007/s11270-023-06745-3
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A combination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm. Groundwater for Sustainable Development, 24, 101062. https://doi.org/10.1016/j.gsd.2023.101062
Panahi, J., Mastouri, R., & Shabanlou, S. (2022). Insights into enhanced machine learning techniques for surface water quantity and quality prediction based on data pre-processing algorithms. Journal of Hydroinformatics, 24(4), 875–897. https://doi.org/10.2166/hydro.2022.022
Prieto, A., Prieto, B., Ortigosa, E.M., Ros, E., Pelayo, F., Ortega, J., & Rojas, I. (2016). Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214, 242-268. https://doi.org/10.1016/j.neucom.2016.06.014
Rizeei, H. M., Pradhan, B., Saharkhiz, A., & Lee, S. (2019). Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. Journal of Hydrology, 579, 124172. https://dx.doi.org/10.1016/j.jhydrol.2019.124172
Shabanlou, S. (2018). Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels. Flow Measurement and Instrumentation, 59, 63-71. https://doi.org/10.1016/j.flowmeasinst.2017.11.003
Vapnik, V., & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2), 264-280. https://doi.org/10.1137/1116025
World Health Organization. (2022). Guidelines for drinking‑water quality: incorporating the first and second addenda, WHO publications, Geneva, Switzerland. https://www.who.int/publications/i/item/9789240045064
Wu, Q., Zhang, T., Sun, H., & Kannan, K. (2010). Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts. Archives of environmental contamination and toxicology , 58(3), 543-550. http://dx.doi.org/10.1007/s00244-010-9485-6
Zhang, Q., Qian, H., Xu, P., & Li, W. (2021). Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District. Journal of Cleaner Production, 298, 126783. http://dx.doi.org/10.1016/j.jclepro.2021.126783