شبیه‌سازی سطح آب زیرزمینی آبخوان دشت اراک با استفاده از مدل MODFLOW و شبکه عصبی مصنوعی مبتنی بر روش دسته‌بندی گروهی داده‌ها (GMDH)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد تفت، دانشگاه آزاد اسلامی، تفت، ایران.

2 گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران.

چکیده

هدف: هدف این مطالعه شبیه‌سازی نوسانات سطح آب زیرزمینی دشت اراک با استفاده از مدل MODFLOW و شبکه عصبی GMDH استفاده شد.
 
 روش پژوهش: در این تحقیق ابتدا مدل ناپایدار MODFLOW برای یک دوره هشت‌ساله (فروردین 1385 الی اسفند 1393)با گام زمانی ماهانه واسنجی گردید. سپس این مدل برای یک دوره دو ساله (فروردین 1393 الی اسفند 1395) صحت سنجی شد. در این حالت مقدار شاخص های R2، NSE و RMSE برای مدل ناپایدار به ترتیب 9081/0، 7390/0 و 9226/0  بودند درحالی‌که مقدار این شاخص ها برای مرحله صحت سنجی به ترتیب 6783/0، 8948/0، و 9721/0  بودند. در گام بعدی از مدل GMDH  برای شبیه‌سازی نوسانات سطح آب زیرزمینی  استفاده شد. در این حالت از 80 درصد داده ها برای اموزش مدل GMDH و از  20 درصد داده‌های  باقیمانده برای تست مدل GMDH استفاده شد. مقدار شاخص؜های R2، NSE و RMSE برای مرحله اموزش شبکه به ترتیب برابر 9319/0، 9192/0 و 2285/0  و برای مرحله تست نیز برابر9817/0، 9865/0 و 2542/0 محاسبه شدند.
 
 یافته‌ها: بر اساس نتایج این مطالعه با وجود اینکه هر دو مدل از کارایی مناسبی برای شبیه‌سازی نوسانات سطح آب زیرزمین برخوردار هستند؛ اما نوسانات سطح آب زیرزمینی با استفاده از  GMDH نسبت به مدل  MODFLOW نوسانات سطح آب زیرزمینی را بادقت بیشتری می؜تواند شبیه‌سازی شدند. اما با استفاده از مدل NODFLOW راحت‌تر می‌توان تجزیه‌وتحلیل‌های هیدروژئولوژیکی انجام داد.
 
 نتیجه‌گیری: زمانی که هدف از مدل‌سازی صرفاً شبیه‌سازی سطح آب زیرزمینی است مدل GMDH مناسب‌تر است اما رمانی که هدف اصلی از شبیه‌سازی بررسی شرایط هیدروژئولوژیکی است مدل MODFLOW مناسب‌تر است.

کلیدواژه‌ها

موضوعات


Ahmadi, S. H., & Sedghamiz, A. (2007). Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental monitoring and assessment, 129(1), 277-294. https://doi.org/10.1007/s10661-006-9361-z
Amiri, S., Rajabi, A., Shabanlou, S. Yosefvand, F., & Izadbakhsh, M.A. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Sci Inform, 16, 3227–3241. https://doi.org/10.1007/s12145-023-01052-1
Arabgol, R., Sartaj, M., & Asghari, K. (2016). Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. Environmental Modeling & Assessment, 21(1), 71-82. https://doi.org/10.1007/s10666-015-9468-0
Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A., & Shabanlou, S. (2023) Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage, 72(3), 747–762. https://doi.org/10.1002/ird.2794
Bear, J. (2012). Hydraulics of groundwater. Courier Corporation, Mineola, New York. https://www.scirp.org/reference/referencespapers?referenceid=2874426
Bloomfield, J., Marchant, B., Bricker, S., & Morgan, R. (2015). Regional analysis of groundwater droughts using hydrograph classification. Hydrology and Earth System Sciences, 19(10), 4327-4344. https://doi.org/10.5194/hess-19-4327-2015
Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-60698-9
Choubin, B., & Malekian, A. (2017). Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environmental Earth Sciences, 76(15), 1-10. https://doi.org/10.1007/s12665-017-6870-8
Coulibaly, P., Anctil, F., Aravena, R., & Bobée, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37(4), 885-896. https://doi.org/10.1029/2000WR900368
Ebtehaj, I., Bonakdari, H., & Gharabaghi, B. (2018). Development of more accurate discharge coefficient prediction equations for rectangular side weirs using adaptive neuro-fuzzy inference system and generalized group method of data handling. Measurement, 116, 473-482. https://doi.org/10.1016/j.measurement.2017.11.023
Esmaeili, F., Shabanlou, S., & Saadat, M. (2021). A wavelet-outlier robust extreme learning machine for rainfall forecasting in Ardabil City, Iran. Earth Sci Inform, 14(4), 1-14. https://doi.org/10.1007/s12145-021-00681-8
Fallahi, M.M., Shabanlou, S., Rajabi, A., Yosefvand, F., & IzadBakhsh, M.A. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Appl Water Sci, 13(143). https://doi.org/10.1007/s13201-023-01949-8
Farlow, S. J. (1981). The GMDH algorithm of Ivakhnenko. The American Statistician, 35(4), 210-215. https://doi.org/10.1080/00031305.1981.10479358
Ghazanfari, N., Gholami, S., Emad, A., & Shekarchi, M. (2017). Evaluation of GMDH and MLP networks for prediction of compressive strength and workability of concrete. Bulletin de la Société Royale des Sciences de Liège, 86, 855-868. https://doi.org/10.25518/0037-9565.7032
Hálek, V., & Švec, J. (2011). Groundwater hydraulics. Elsevier Science imprintation, Amsterdam, Netherlands. https://shop.elsevier.com/books/groundwater-hydraulics/halek/978-0-444-99820-0
Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). Modflow-2000, the u. s. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-file report. U. S. Geological Survey publications, Washington, United States of America. https://doi.org/10.3133/ofr200092
Ivakhnenko, A., & Ivakhnenko, G. (1995). The review of problems solvable by algorithms of the group method of data handling (GMDH). Pattern recognition and image analysis c/c of raspoznavaniye obrazov i analiz izobrazhenii, 5, 527-535.                                 https://articles.gmdh.net/review/algorith.pdf
Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J.-D., & Ross, A. (2016). Integrated groundwater management. Springer Open publications, New York City, United States of America. https://doi.org/10.1007/978-3-319-23576-9
Jalali, M., Karami, S., & Marj, A. F. (2016). Geostatistical evaluation of spatial variation related to groundwater quality database: case study for Arak plain aquifer, Iran. Environmental Modeling & Assessment, 21(6), 707-719. https://rd.springer.com/article/10.1007/s10666-016-9506-6
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2023). A hybrid machine learning model for modeling nitrate concentration in water sources. Water, Air, & Soil Pollution, 234(11), 721. https://doi.org/10.1007/s11270-023-06745-3
Mazraeh, A., Bagherifar, M., Shabanlou, S., & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A combination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm. Groundwater for Sustainable Development, 24, 101062. https://doi.org/10.1016/j.gsd.2023.101062
McLachlan, P., Chambers, J. E., Uhlemann, S. S., & Binley, A. (2017). Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources, 109, 302-319. https://doi.org/10.1016/j.advwatres.2017.09.016
Mirzavand, M., & Ghazavi, R. (2015). A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. Water resources management, 29(4), 1315-1328. https://doi.org/10.1007/s11269-014-0875-9
Moon, S.-K., Woo, N. C., & Lee, K. S. (2004). Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of hydrology, 292(1-4), 198-209. https://doi.org/10.1016/j.jhydrol.2003.12.030
Neuman, S. P. (1972). Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research, 8(4), 1031-1045.                                          https://doi.org/10.1029/WR008i004p01031
Panahi, J., Mastouri, R., & Shabanlou, S. (2022). Insights into enhanced machine learning techniques for surface water quantity and quality prediction based on data pre-processing algorithms. Journal of Hydroinformatics, 24(4), 875–897. https://doi.org/10.2166/hydro.2022.022
Prickett, T. A., & Lonnquist, C. G. (1971). Selected digital computer techniques for groundwater resource evaluation. Bulletin (Illinois State Water Survey) no. 55, Urbana-Champaign, Chicago. https://hdl.handle.net/2142/94585
Sahoo, S., Russo, T., Elliott, J., & Foster, I. (2017). Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resources Research, 53(5), 3878-3895. https://doi.org/10.1002/2016WR019933
Santos, S., Gaspar, A. T. F., & Schiozer, D. J. (2018). Comparison of risk analysis methodologies in a geostatistical context: Monte Carlo with joint proxy models and discretized latin hypercube. International Journal for Uncertainty Quantification, 8(1). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018019782
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
Seifi, A., Ehteram, M., Singh, V. P., & Mosavi, A. (2020). Modeling and uncertaintyanalysis of groundwater level using six evolutionary optimization algorithms hybridized with ANFIS, SVM, and ANN. Sustainability, 12(10), 4023. https://doi.org/10.3390/su12104023
Shabanlou, S. (2018). Improvement of extreme learning machine using self-adaptive evolutionary algorithm for estimating discharge capacity of sharp-crested weirs located on the end of circular channels. Flow Measurement and Instrumentation, 59, 63-71. https://doi.org/10.1016/j.flowmeasinst.2017.11.003
Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons publications, New York City, United States of America. https://www.wiley.com/en-us/Groundwater+Hydrology%2C+3rd+Edition-p-9780471059370
Wang, H. F., & Anderson, M. P. (1995). Introduction to groundwater modeling: finite difference and finite element methods. Academic Press, Cambridge, Massachusetts, United States of America.                                                https://books.google.com/books/about/Introduction_to_Groundwater_Modeling.html?id=uJT-jwTZQW8C
Zhang, A., Winterle, J., & Yang, C. (2020). Performance comparison of physical process-based and data-driven models: a case study on the Edwards Aquifer, USA. Hydrogeology Journal, 28(6), 2025-2037. https://doi.org/10.1007/s10040-020-02169-z