اخروی، سید سعید.، و اسلامیان، سید سعید. (1399). تالاب مصنوعی، چالش- راهکار- طراحی. نشریه علمی علوم و مهندسی آب و فاضلاب، 5(3)، 21-5. https:// doi.org/10.22112/JWWSE.2020.214377.1180
شیخان، امیر.، شایاننژاد، محمد.، و عرب نصرآبادی، وحید. (1398). بررسی کارایی تالاب مصنوعی زیرسطحی هیبریدی در تصفیه تکمیلی پساب شهری. علوم آب و خاک. 23(2)، 126-115.//10.292.52/Jstnar.23.2.115 https:// doi.org
Allen, R. G., Pereira, L. S., Raes D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300, D05109. https://doi.org/10.1007/978-981-10-3084-0_13
Anand, S., Bharti, S. K., Dviwedi, N., Barman, S. C., & Kumar, N. (2017). Macrophytes for the reclamation of degraded waterbodies with potential for bioenergy production. Phytoremediation Potential of Bioenergy Plants, 333-351. https://ouci.dntb.gov.ua/en/works/4M8qjLb7/
Bakhshoodeh, R., Alavi, N., Oldham, C., Santos, R. M., Babaei, A. A., Vymazal, J., & Paydary, P. (2020). Constructed wetlands for landfill leachate treatment: A review. Ecological Engineering, 146, 105725. https://doi.org/10.1016/j.ecoleng.2020.105725
Bannayan, M., & Hoogenboom, G. (2009). Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crop Research, 11(3), 299-302. https://doi.org/10.1016/j.fcr.2009.01.007
Chen, Y. Y., Sun, P., Chen, G. L., & Wang, N. N. (2015). A contrastive study on salt-alkaline resistance and removal efficiency of nitrogen and phosphorus by Phragmites australis and Typha angustifolia in coastal estuary area. Huan Jing ke Xue= Huanjing Kexue, 36(4), 1489-1496. https://pubmed.ncbi.nlm.nih.gov/26164931/
Alexandratos, N.; & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.22004/ag.econ.288998
Jamieson, P. D., Porter, J. R., & Wilsin, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crop grown in New Zealand. Field Crop Research, 27, 337-350. https://doi.org/10.1016/0378.4290(91)90040-3
Gholipour, A., Zahabi, H., & Stefanakis, A. I. (2020). A novel pilot and full-scale constructed wetland study for glass industry wastewater treatment. Chemosphere, 247, 125966. https://doi.org/10.1016/j.chemosphere.2020.125966
Hosseini, H.R., & Ghodsian M, (2011). Wetlands their benefits and disadvantages, Proceedings of the2th PublicConference of Application Usage Researches, May 18-19, Zanjan, Iran.
Hussein, A., & Scholz, M. (2017). Dye wastewater treatment by vertical-flow constructed wetlands. Ecological Engineering, 101, 28-38. https://doi.org/10.1016/j.ecoleng.2017.01.016
Kadlec, R.H., & Wallace, S.D. (2009). Treatment Wetlands, 2nd ed. CRC Press, Boca Raton, FL. https://sswm.info/sites/default/files/reference_attachments/KADLEC%20WALLACE%202009%20Treatment%20Wetlands%202nd%20Edition_0.pdf
Lippmann, T. J., Heijmans, M. M., Van der velde, Y., Dolman, H., Hendriks, D. M., & Van huissteden, K. (2023). Peatland-VU-NUCOM (PVN 1.0): Using dynamic PFTs to model peatland vegetation, CH4 and CO2 emissions. Geoscientific Model Development Discussions, 16(22): 6773-6804. https://doi.org/10.5194/gmd-16-6773-2023
Martin, E. J., & Martin, E. T. (1991). Technologies for small water and wastewater systems. 1th ed, John Wiley and Sons, Inc, New York. 366. https://books.google.com/books/about/Technologies_for_Small_Water_and_Wastewa.html?id=PVR4QgAACAAJ
Okhravi, S., & Eslamian, S. (2020). Constructed Wetland, Challenge-Approach-Design. Journal of Water and Wastewater Science and Engineering, 5(3), 5-21. http://doi.org/10.22112/jwwse.2020.214377.1180. [In Persian]
Pálfy, T.G. & Langergraber, G. (2014). The verification of the Constructed Wetland Model No. 1 implementation in HYDRUS using column experiment data. Ecological Engineering, 68, 105-115. https://doi.org/10.1016/j.ecoleng.2014.03.016
Pálfy, T. G., Molle, P., Langergraber, G., Troesch S., Gourdon R., & Meyer, D. (2016). Simulation of constructed wetlands treating combined sewer overflow using HYDRUS/CW2D. Ecological Engineering, 87: 340-347. https://doi.org/10.1016/j.ecoleng.2015.11.048
Rahi, M.A., Faisal, A. A.H., Naji, L.A., Almuktar, S. A., Abed, S.N., & Scholz, M. (2020). Biochemical performance modelling of non-vegetated and vegetated vertical subsurface-flow constructed wetlands treating municipal wastewater in hot and dry climate. Journal of Water Process Engineering, 33, 101003. https://doi.org/10.1016/j.jwpe.2019.101003
Raude, J. M., Mutua, B. M., & Kamau, D. N. (2018). Simulation of the hydraulics and treatment performance of horizontal subsurface flow constructed wetland treating greywater. International of Ecotoxicology and Eco biology, 3 (2), 40-55. https://doi.org/10.11648/j.ijee.20180302.12
Rizzo, A. G., Langergraber, A., Galvão, F. Boano, R., & Revelli, L. (2014). Modelling the response of laboratory horizontal flow constructed wetlands to unsteady organic loads with HYDRUS-CWM1. Ecology Engineering, 68, 209-213. https://doi.org/10.1016/j.ecoleng.2014.03.073
Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of environmental management, 112, 429-448. https://doi.org/10.1016/j.jenvman.2012.08.011
Seidel, K., (1955). Die Flechtbinse: Ökologie, Morphologie und Entwicklung, ihre Stellung bei den Völkern und ihre wirtschaftliche Bedeutung. Schweizerbart, Stuttgart, Germany. https://doi.org/10.1002/JPLN.19560720110
Seidel, K. (1961). Zur Problematik der Keim-und Pflanzgewässer. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 14 (2), 1035-1043. https://doi.org/10.1080/03680770.1959.11899410
Seidel, K. (1964). Abbau von bacterium coli durch höhere wasserpflanzen. Naturwissenschaften, 51. https://doi.org/10.1007/BF00637265
Seidel, K. (1966). Reinigung von Gewässern durch höhere Pflanzen. Naturwissenschaften, 53 (12), 289-297. https://doi.org/10.1007/BF00712211
Simunek, J., Sejna, M., & Van Genuchten, M. (1999). The HYDRUS-2D software package for simulating two-dimensional movement of water, heat and multiple solutes in variably saturated media. Version 2.0. International Ground Water Modeling Center, Colorado School. Colorado. https://www.researchgate.net/publication/236901785.
Sheykhan, A., Shayannejad, M., & Arab-Nasrabadi, V. (2019). Performance Review of Hybrid Subsurface Constructed Wetlands in Urban Wastewater Supplementary Treatment. Journal of Water and Soil Science; 23 (2):115-126. http://doi.org/10.29252/jstnar.23.2.115 [In Persian]
Sperling, M. V. (1996). Comparison among the most frequently used systems for wastewater treatment in developing countries. Water Science and Technology, 33(3), 59-72. https://doi.org/10.1016/0273-1223 (96)00301-0
Toscano, A., Langergraber, G., Consoli, S., & Cirelli, G. L. (2009). Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands. Ecological Engineering, 35 (2), 281-289. https://doi.org/10.1016/j.ecoleng.2008.07.011
Vymazal, J., & Kropfelova, L. (2008). Wastewater treatment in constructed wetlands with horizontal sub-surface flow. Springer science & business media. https://doi.org/10.1007/978-1-4020-8580-2
Upadhyaya, A. K., Singhc, N. K., Bankotib, N. S., & Rai, U. N. (2017). Designing and construction of simulated constructed wetland for treatment of sewage containing metals. Environmental Technology, 38 (21), 2691-2699. https://doi.org/10.1007/978-1-4020-8580-2
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63 (11), 1309-1313. http://doi.org/10.1175/1520-0477