دستورانی، محمدتقی.، پورمحمدی، سمانه.، و رحیمیان، محمدحسن. (1391). تخمین تبخیر-تعرق واقعی باغات پسته منطقه اردکان به کمک سنجش از دور. پژوهش آب در کشاورزی، 26 (1)، 13-1. https://doi.org/10.22092/jwra.2012.118947
سلیمی فرد، مژده.، ثنایی نژاد، سیدحسین.، و راشکی، علیرضا. (1401). تخمین تبخیر-تعرق واقعی با استفاده از الگوریتم مثلثی و دادههای لندست 8 (مطالعه موردی: دشت مشهد- استان خراسان رضوی). سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، انتشار آنلاین،
https://doi.org/10.30495/GIRS.2022.695287
Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. Journal of Irrigation and Drainage Engineering, 133(4), 395–406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)
Allen, R., Pereira, Raes, L. D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy. https://www.researchgate.net/publication/235704197
Bastiaanssen, W. G. M., Menenti, Feddes, M., R. A. & Holtslag, A. A. M. (1998a). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212–213(1–4),198–212, https://doi.org/10.1016/S0022-1694(98)00253-4
Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma,Y., Moreno, J. F., Roerink, G. J., & van der Wal, T. (1998b). A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation. Journal of Hydrology, 212–229. https://doi.org/10.1016/S0022-1694(98)00254-6
Bisht, G., Venturini,V., Islam, S., & Jiang, L. (2005). Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sensing of Environment, 97(1), 52–67. https://doi.org/10.1016/j.rse.2005.03.014
Carlson, T. (2007). An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery. Sensors, 7(8), 1612–1629. https://doi.org/10.3390/s7081612
Carlson, T.N., & Petropoulos, G.P. (2019). A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: the simplified triangle. International Journal of Remote Sensing, 40,7716–7729. https://doi.org/10.1080/01431161.2019.1601288
Cui Y., Jia, L., & Fan, W. (2021). Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agriculture and Forest Meteorology, 307, 108488. https://doi.org/10.1016/j.agrformet.2021.108488
Cui Y., Ma, S., Yao, Z., Chen, X., Luo, Z., Fan, W., & Hong, Y. (2020). Developing a Gap-Filling Algorithm Using DNN for the Ts-VI Triangle Model to Obtain Temporally Continuous Daily Actual Evapotranspiration in an Arid Area of China. Remote Sensing, 12,1121. https://doi.org/10.3390/rs12071121
DaSilva, B. B., Braga, A. C., Braga, C. C., De Oliveira, L. M. M., Montenegro,S. M. G. L., & Barbosa Junior, B. (2016). Procedures for calculation of the albedo with OLI-Landsat 8 images: Application to the Brazilian semi-arid. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(1), 3–8. https://doi.org/10.1590/1807-1929/agriambi.v20n1p3-8
Dastoorani, M., Poormohammadi, S., & Rahimian, M. H. (2012). Estimation of Actual Evapotranspiration in Ardakan Pistachio Orchards Using Remote Sensing. Journal of Water Research in Agriculture, 26(1), 1-13. https://doi.org/10.22092/jwra.2012.118947 [In Persian]
De Tomás, A., Nieto, H., Guzinski, R., Salas, J., Sandholt, I., & Berliner, P. (2014). Validation and scale dependencies of the triangle method for the evaporative fraction estimation over heterogeneous areas. Remote Sensing of Environment, 152, 493–511. https://doi.org/10.1016/j.rse.2014.06.028
Gad, H. E., & El-Gayar, S. M. (2010). Climate parameters used to evaluate the evapotranspiration in delta central zone of Egypt. Fourteenth International Water Technology Conference, IWTC14, (February), 529–548. https://www.researchgate.net/publication/267803552
Gao, Y., & Long, D. (2008). Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT. Hydrological Processes, 22(25), 4850–4869. https://doi.org/10.1002/hyp.7104
Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. ISPRS Journal of Photogrammetry and Remote Sensing, 167, 276–288. https://doi.org/10.1016/j.isprsjprs.2020.07.013
Jiang, L., & Islam, S. (1999). A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophysical Research Letters, 26(17), 2773–2776. https://doi.org/10.1029/1999GL006049
Jiang, L., & Islam, S. (2001). Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resources Research, 37(2), 329–340. https://doi.org/10.1029/2000WR900255
Jiang, L., and & Islam, S. (2003). An intercomparison of regional latent heat flux estimation using remote sensing data. International Journal of Remote Sensing, 24(11), 2221–2236. https://doi.org/10.1080/01431160210154821
Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94(1), 13–29. https://doi.org/10.1016/S0168-1923(99)00005-2
Li, Z., Jia, L., & Lu, J. (2014). On Uncertainties of the Priestley-Taylor/LST-Fc Feature Space Method to Estimate Evapotranspiration: Case Study in an Arid/Semiarid Region in Northwest China. Remote Sensing, 7(1), 447–466. https://doi.org/10.3390/rs70100447
Luo, T., Jutla, A., & Islam, S. (2015). Evapotranspiration estimation over agricultural plains using MODIS data for all sky conditions. International Journal of Remote Sensing, 36(5), 1235–1252. https://doi.org/10.1080/01431161.2015.1009648
Menenti, M., & Choudhury, B. (1993). Parameterization of land surface evaporation by means of location dependent potential evaporation and surface temperature range. Proceding, 10A1407587, 561–568. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201002169795909661
Mianabadi, A., Shirazi, P., Ghahraman, B., Coenders-Gerrits, A. M. J., Alizadeh, A. & Davary, K. (2019). Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966–2015. Theoretical and Applied Climatology, 135(1–2), 677–691. https://doi.org/10.1007/s00704-018-2410-z
Minacapilli M., Consoli, S., Vanella, D., Ciraolo, G., & Motisi, A. (2016). A time domain triangle method approach to estimate actual evapotranspiration: Application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sensing of Environment, 174, 10–23. https://doi.org/10.1016/j.rse.2015.12.018
Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3–4), 263–293. https://doi.org/10.1016/0168-1923(95)02265-Y
Rahimzadegan, M., & Janani, A. (2019). Estimating evapotranspiration of pistachio crop based on SEBAL algorithm using Landsat 8 satellite imagery. Agricultural Water Management, 217, 383–390. https://doi.org/10.1016/j.agwat.2019.03.018
Rasmussen, M. O., Sørensen, M. K., Wu, B., Yan, N. Qin, H., & Sandholt, I. (2014). Regional-scale estimation of evapotranspiration for the North China Plain using MODIS data and the triangle-approach. International Journal of Applied Earth Observation and Geoinformation, 31, 143–153. https://doi.org/10.1016/j.jag.2014.03.017
Roerink, G. J., Su, Z., & Menenti, M. (2000). S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(2), 147–157. https://doi.org/10.1016/S1464-1909(99)00128-8
Salimi Fard, M., Sanainejad, S.H., & Rashki, A. (2022). Actual evaportranspiration estimation by Triangle algorithm and landsat 8 dara (Case study: Mashhad plain-Khorasan Razavi province). Journal of RS and JIS for natural Resources, Ready to Publish. https://doi.org/10.30495/GIRS.2022.695287 [In Persian]
Shuttleworth, W. J., & Wallace, J. S. (1985). Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469), 839–855. https://doi.org/10.1002/qj.49711146910
Stisen, S., Sandholt, I., Nørgaard, A., Fensholt, R., & Jensen, K. H. (2008). Combining the triangle method with thermal inertia to estimate regional evapotranspiration — Applied to MSG-SEVIRI data in the Senegal River basin. Remote Sensing of Environment, 112(3), 1242–1255. https://doi.org/10.1016/j.rse.2007.08.013
Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100. https://doi.org/10.5194/hess-6-85-2002
Sun, Z., Wang, Q., Matsushita, B., Fukushima, T., Ouyang, Z., & Watanabe, M. (2008). A New Method to Define the VI-Ts Diagram Using Subpixel Vegetation and Soil Information: A Case Study over a Semiarid Agricultural Region in the North China Plain. Sensors, 8(10), 6260–6279. https://doi.org/10.3390/s8106260
Tang, R., Li, Z. L., & Tang, B. (2010). An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 114(3), 540–551. https://doi.org/10.1016/j.rse.2009.10.012
Tang, R., Li, Z., & Chen, K. (2011). Validating MODIS-derived land surface evapotranspiration with in situ measurements at two AmeriFlux sites in a semiarid region. Journal of Geophysical Research, 116(D4), D04106. https://doi.org/10.1029/2010JD014543
Teixeira, A. H. d. C., Bastiaanssen, W. G. M. Ahmad, M. D., & Bos, M. G. (2009). Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Part B: Application to the regional scale. Agricultural and Forest Meteorology, 149(3–4), 477–490. https://doi.org/10.1016/j.agrformet.2008.09.014
Wang, W., Huang, D., Wang, X. G., Liu, Y. R., & Zhou, F. (2011). Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrology and Earth System Sciences, 15(5), 1699–1712. https://doi.org/10.5194/hess-15-1699-2011
Zhang, H., Gorelick, S., Avisse, N., Tilmant, A., Rajsekhar, D., & Yoon, J. (2016). A New Temperature-Vegetation Triangle Algorithm with Variable Edges (TAVE) for Satellite-Based Actual Evapotranspiration Estimation. Remote Sensing, 8(9),735. https://doi.org/10.3390/rs8090735
Zhu W., Wang, Y., & Jia, S. (2023). A remote sensing-based method for daily evapotranspiration mapping and partitioning in a poorly gauged basin with arid ecosystems in the Qinghai-Tibet Plateau. Journal of Hydrology, 616, 128807. https://doi.org/10.1016/j.jhydrol.2022.128807