پیش‌بینی فاکتورهای اقلیمی و بهره‌وری آب مزرعه ذرت دانه‌ای (.Zea mays L) در شرایط تغییر اقلیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد اگرواکولوژی، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران.

2 دانشیار اکولوژی گیاهان زراعی، گروه تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران.

3 دانش‌آموخته فیزیولوژی گیاهان زراعی، گروه مهندسی تولید و ژنتیک گیاهی، دانشگاه رازی، کرمانشاه، ایران.

چکیده

این تحقیق برای شبیه‌سازی اثر تغییر اقلیم بر فاکتورهای محیطی تاثیرگذار بر رشد، تولید و بهره‌وری آب ذرت اجرا شد. صفات شامل تشعشع خورشید، درجه حرارت، آب مصرفی و تبخیر و تعرق دوره رشد بود. برای شبیه‌سازی صفات ذرت از مدل CERES-Maize استفاده شد.نتایج پیش‌بینی مدل‌های گردش عمومی نشان داد مجموع تشعشع روزانه خورشید از 3418 در شرایط مبنا، طبق سناریوهای RCP4.5 و RCP8.5 به ترتیب به 3983 و 3984 برای تغییر اقلیم نزدیک و به 4006 و 4023 مگاژول بر متر مربع برای تغییر اقلیم دور رسید. در شرایط مبنا میانگین دمای دوره رشد 22 درجه سانتی‌گراد بود که براساس سناریوهای RCP4.5 و RCP8.5 به ترتیب، 3/2 و 3/4 درصد در دوره آینده نزدیک و 5/8 و 2/17 درصد در دوره آینده دور افزایش یافت. میزان آب مصرفی، کارایی مصرف آب و تبخیر و تعرق در شرایط تغییر اقلیم نزدیک در سناریوی RCP4.5 نسبت به شرایط مبنا به ترتیب، 1/9، 4/5- و 7/7 درصد و در سناریوی RCP8.5 به ترتیب، 2/9، 6/11- و 7/6 درصد تغییر کرد. این مقادیر در شرایط تغییر اقلیم دور برای سناریوی RCP4.5 به ترتیب، 7/9، 7/23- و 9/6 درصد و برای سناریوی RCP8.5 به ترتیب، 1/10، 7/50- و 7/5 درصد بودند. در شرایط تعییر اقلیم کاشت ذرت در تاریخهای دیرهنگام در مقایسه با تاریخهای زودهنگام و رایج منجر به بهبود کارایی مصرف آب شد. رقم Simon بیشترین کارایی مصرف آب را داشت. در مجموع کاشت رقم Simon در تاریخ 4 خرداد می‌تواند به عنوان راهکاری برای مقابله با تغییر اقلیم پیشنهاد گردد.

کلیدواژه‌ها


جهانبخش اصل، سعید.، خورشید ‌دوست، علی محمد.، عالی‌نژاد، محمدحسین.، و پوراصغر، فرناز. (1395). تأثیر تغییر اقلیم بر دما و بارش با در نظر گرفتن عدم قطعیت مدل‌ها و سناریو‌های اقلیمی (مطالعه موردی: حوضه‌ی شهر چای ارومیه). نشریه هیدروژئومورفولوژی، 2(7)، 107-122. https://dorl.net/dor/20.1001.1.23833254.1395.3.7.6.2
رحیمی‌ﻣﻘﺪم، سکینه.، ﻋﯿﻨﯽ ﻧﺮﮔﺴﻪ، حامد.، دﯾﻬﯿﻢ ﻓﺮد، رضا.، و ﺣﻘﯿﻘﺖ، مسعود. (1397). ﺷﺒﯿﻪﺳﺎزی اﺛﺮ ﺗﻐﯿﯿﺮ اﻗﻠﯿﻢ ﺑﺮ ﻋﻤﻠﮑﺮد داﻧﻪ ذرت (Zea mays L.) در استان کرمانشاه با استفاده از یک مدل فرآیند‌گرا. مجله علوم زراعی ایران، 20(4)، 328-315. https://sid.ir/paper/375658/fa
کرمی، فریبا.، خالدی، شهریار.، شکیبا، علیرضا.، براتی، غلامرضا.، و باباییان، ایمان. (1397). شبیه‌سازی عملکرد دانه ذرت بر اساس سناریوهای تغییر اقلیم در استان فارس. نشریه تحقیقات کاربردی علوم جغرافیایی، 17(47)، 93-77. http://jgs.khu.ac.ir/article-1-2938-fa.html
مرادی، روح‌اله.، کوچکی، علیرضا.، و نصیری محلاتی، مهدی. (1392). تأثیر تغییر اقلیم بر تولید ذرت و ارزیابی تغییر تاریخ کاشت به‏عنوان راهکار سازگاری در شرایط آب و هوایی مشهد، دانش کشاورزی و تولید پایدار. 23(4)، 130-111. https://sustainagriculture.tabrizu.ac.ir/article_786_f0811ad6bcc19f78b259bf30a3431687.pdf
مندنی، فرزاد. (1396). شبیه‌سازی اثر کود نیتروژن بر تولید ذرت (Zea maize) توسط مدل CERES-Maize تحت شرایط اقلیمی کرمانشاه. مجله آب و خاک. 31، 1678-1665. 10.22067/jsw.v31i6.61895:// https
مندنی، فرزاد.، کرمی، پریسا.، و قبادی، روژین. (1400). شبیه‌سازی تاثیر رژیم های رطوبتی بر رشد و عملکرد ذرت (Zea mays) در منطقه کرمانشاه توسط مدل CERES-Maize. تحقیقات علوم زراعی در مناطق خشک، 3(1)، 56-39. 10.22034/csrar.2021.280069.1091:// https
Amouzou, K. A. Lamers, J. P., Naab, J. B. Borgemeister, C., Vlek , P., & Land Becker, M. (2019). Climate change impact on water-and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crops Research, 235, 104-117.              https://doi.org/10.1016/j.fcr.2019.02.021
Boonwichai, S., Shrestha, S., Babel, M. S., Weesakul, S., & Datta, A. (2018). Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. Journal of cleaner production. 198, 1157-1164.                                     https://doi.org/10.1016/j.jclepro.2018.07.146
Dias, M. P. N. M., Navaratne, C. M., Weerasinghe, K. D. N., & Hettiarachchi, R. H. A. N. (2016). Application of DSSAT crop simulation model to identify the changes of rice growth and yield in Nilwala river basin for mid-centuries under changing climatic conditions. Procedia food science, 6, 159-163. https://doi.org/10.1016/j.profoo.2016.02.039
Hoogenboom, G. Jones, J.W. Wilkens, P.W. Porter, C.H. Boote, K.J. Hunt, L.A. Singh, U., Lizaso, J.L. White, J.W. Uryasev, O. Ogoshi, R. Koo, J. Shelia, V. & Tsuji, G.Y. (2015). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.6 (www.DSSAT.net). DSSAT Foundation, Prosser, Washington. https://www.scienceopen.com/document?vid=e47eace4-48b7-424f-ae93-fb7727d30e24
Huang, Y., Yu, Y., Zhang, W., Sun, W., Liu, S., Jiang, J., Wu, J., Yu, W., & Yang, Z. (2009). Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agri. Forest. Meteorol, 149, 106-129. https://doi.org/10.1016/j.agrformet.2008.07.013
Hulme, M., Barrow, E. M., Arnell, N. W., Harisson, P. A., Jones, T. C., & Dowing, T. E. (1999). Relative impacts of human-induced climate change and natural climate variability. Nature, 397, 688-691. https://doi.org/10.1038/17789
Leakey, A. D. B. )2009(. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 276, 2333-2343. https://doi.org/10.1098/rspb.2008.1517
Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312, 1918-1921. https:// DOI: 10.1126/science.1114722
Islama, A., Ahuja, R. L., Garciab, L. A., Ma, L., Saseendran, A. S., & Trout, T. J. (2012). Modeling the impacts of climate change on irrigated maize production in the Central Great Plains. Agricaltural Water Management, 110, 9-108. https://doi.org/10.1016/j.agwat.2012.04.004
Jahanbakhsh Asl, S., Khorshiddoust, A. M., Alinejad, M. H., & Pourasghr, F. (2016). Impact of climate change on precipitation and temperature by taking the uncertainty of models and climate scenarios (Case Study: Shahrchay Basin in Urmia). Hydrogeomorphology, 3(7), 107-122. https://dorl.net/dor/20.1001.1.23833254.1395.3.7.6.2 [In Persian]
Karami, F., Khaledi, Sh., Shakiba, A. R. Barati, Gh., & Babaeian, I. (2017). Simulation yield of maize based on scenarios of climate change in Fars province. Journal of Applied researches in Geographical Sciences, 17(47), 77-93. http://jgs.khu.ac.ir/article-1-2938-fa.html [In Persian]   
Khabba, S., Ledent, J. F., & Lahrouni, A. (2001). Maize ear temperature. European Journal of Agronomy, 14, 197-208. https://doi.org/10.1016/S1161-0301(00)00095-2
Liu, Z., Hubbard, K. G., Lin, X., & Yang, X. (2013). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global change biology, 19(11), 3481-3492. https://doi.org/10.1111/gcb.12324
Mondani, F. (2018). Simulation of Nitrogen Fertilizer Effect on Maize (Zea maize) Production by CERES-Maize Model under Kermanshah Climate Condition. Water and Soil31(6), 1665-1678. https://doi.org/10.22067/jsw.v31i6.61895
Mondani, F., Karami, P., & Ghobadi, R. (2021). Simulation of moisture regimes effect on maize (Zea mays) growth and yield in Kermanshah region by CERES-Maize model. Crop Science Research in Arid Regions3(1), 39-56. https://doi.org/10.22034/csrar.2021.280069.1091
Moradi, R., Koocheki, A. L., & Nassiri Mahallati, M. (2014). Effect of Climate Change on Maize Production and Shifting of Planting Date as Adaptation Strategy in Mashhad. Journal of Agricultural Science and Sustainable Production, 23(4), 111-130.                               https://sustainagriculture.tabrizu.ac.ir/article_786_f0811ad6bcc19f78b259bf30a3431687.pdf [In Persian]
Morison, J. I. L., & Morecroft, M. D. (2006). Plant Growth and Climate Change. Blackwell Publisher, Oxford, England. https://doi.org/10.1002/9780470988695
Ozkan, B., & Akcaoz, H. (2002). Impacts of climate factors on yields for selected crops in southern Turkey. Mitig Adapt Strat Glob Change, 7, 367-380. https://doi.org/10.1023/A:1024792318063
Rahimi-Moghaddam, S., Kambouzia, J., & Deihimfard. R., (2018). Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology, 253, 1-14.                               https://doi.org/10.1016/j.agrformet.2018.01.032 [In Persian]
Rahimi-Moghaddam, S., Eyni Nargeseh, H., Deihimfard, R., & Haghighat, M. (2019). Simulating climate change effect on maize (Zea mays L.) grain yield in Kermanshah province using a process-based simulation model. Iranian Journal of Crop Sciences, 20(4), 315-328.                          https://sid.ir/paper/375658/fa 
Ranuzzi, A., & Srivastava, R. (2012). Impact of Climate Change on Agriculture and Food Security. ICRIER Policy Series, no. 16. https://www.icrier.org/pdf/Policy_Series_No_16.pdf
Rosenzweig, C., & Tubiello, F. N. (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change, 12, 855-873. https://DOI: 10.1007/s11027-007-9103-8
Saunders, M. A. (1999). Earth’s future climate. Philos. The Royal Society, 357, 3459- 3480. https://www.tropicalstormrisk.com/docs/Saunders_1999paper.pdf
Srivastava, A. K., Mboh, C. M., Zhao, G., Gaiser, T., & Ewert, F. (2018). Climate change impact under alternate realizations of climate scenarios on maize yield and biomass in Ghana. Agricultural systems, 159, 157-174. https://doi.org/10.1016/j.agsy.2017.03.011
Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strat Glob Change, 7, 85-114. https://doi.org/10.1023/A:1015862228270
Tingem, M., & Rivington, M. (2009). Adaptation for crop agriculture to climate change in Cameroon: Turning on the heat. Mitigation and Adaptation Strategies for Global Change, 14, 153-168. https://doi.org/10.1007/s11027-008-9156-3
Trnka, M., Dubrovsky, M., & Ekzalud, Z. (2004). Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Climatic Change, 64, 227-255. https://doi.org/10.1023/B:CLIM.0000024675.39030.96
Tubiello, F. N., Jagtap, S., Rosenzweig, C., Goldberg, R., & Jones, J. W. (2002). Effects of climate change on US crop production from the National Assessment. Simulation results using two different GCM scenarios. Part I: Wheat, Potato, Corn, and Citrus. Climate research, 20, 259-270. https://doi.org/10.3354/cr020259
Zhang, Y., Wang, Y., & Niu, H. (2019). Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Science of The Total Environment, 656, 373-387.                           https://doi.org/10.1016/j.scitotenv.2018.11.362