بررسی اثر برداشت آب زیرزمینی برآبدهی رودخانه سزار و پیش‌بینی جریان آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد سازه‌های آبی، دانشگاه لرستان، لرستان، ایران.

2 دانشیار گروه مهندسی آب، دانشگاه لرستان، لرستان، ایران.

چکیده

رودخانه‌ی سزار از سرشاخه‌های اصلی رودخانه‌ی دز می‌باشد و پیش‌بینی جریان آبدهی بلندمدت آن به منظور بهره-برداری بهینه از مخزن سد دز اهمیت دارد. در این پژوهش ابتدا روند آبدهی رودخانه سزار در دوره‌ی آماری 49-1348 الی 87-1386 که یک دوره‌ی بدون روند در بارش حوضه است، با روش TFPW_MK ارزیابی شد. نتایج نشان داد رودخانه‌ی سزار دارای روند منفی معنادار آبدهی است. سپس به منظور ارزیابی علل کاهش آبدهی این رودخانه سه عامل اساسی تآثیرگذار بر آبدهی رودخانه که عبارتند از بارش، برداشت‌های درون‌ و برون ‌حوضه‌ای از منابع آب سطحی حوضه و برداشت‌ از منابع آب‌ زیرزمینی حوضه، مورد ارزیابی قرار گرفتند. نتایج نشان داد علت اصلی کاهش آبدهی این رودخانه برداشت بیش از حد از آب‌های زیرزمینی است. در نهایت جریان بلندمدت آبدهی رودخانه سزار پیش‌بینی گردیدو نتایج نشان داد میانگین سری زمانی آبدهی پیش‌بینی شده رودخانه سزار در حدود (m3/s) 22.42 از میانگین سری زمانی آبدهی این رودخانه در حالت عدم برداشت بیش از حد از منابع آب زیرزمینی که سبب تعامل آب-های سطحی و زیرزمینی نمی‌شود، کمتر است. داده‌های مورد استفاده شامل، داده‌های 3 ایستگاه هیدرومتری و 15 ایستگاه باران‌سنجی حوضه‌ی سزار، اطلاعات طرح‌های توسعه‌ی درون ‌و برون‌حوضه‌ای منابع آب سطحی و داده‌های مربوط به سال حفر و مختصات چاه‌های آب حوضه مذکور می‌باشد.

کلیدواژه‌ها

موضوعات


بحرینی، غلامرضا.، و صفوی، حمیدرضا. (1387). شبیه‌سازی اندرکنش منابع آب با استفاده از تصاویر ماهواره­ای و تکنیک سیستم­های اطلاعات جغرافیایی(GIS). تحقیقات منابع آب ایران، 4(3)، 14-26. http://www.iwrr.ir/article_15701.html
جاوید، عباس.، و اصغری­مقدم، اصغر. (1385). آنالیز نتایج اندازه گیری دبی رودخانه سنگ سیاه و بررسی ارتباط هیدرولیکی آن با آبخوان دشت دهگلان، دهمین همایش انجمن زمین شناسی ایران، تهران.https://civilica.com/doc/28338
عبدالهی­پورحقیقی، جلیل.، و پیری، جمشید. (1388). برهمکنش آب سطحی - آب زیرزمینی و مدلسازی آن، نخستین کنفرانس سراسری آبهای زیرزمینی، بهبهان.https://civilica.com/doc/75379
لشکری­پور، غلامرضا.، زارع، محمد.، و شهابی­فرد، فاطمه. (1383). اثرات برداشت آب از آبخوان ایرانشهر بر روی دبی پایه رودخانه بمپور. فصلنامه جغرافیا و توسعه، 2(4)، 130-113. https://dx.doi.org/10.22111/gdij.2004.3887
یعقوب زاده، مصطفی.،  ایزدپناه، زهرا.، برومند نسب، سعید.، و سید کابلی، حسام. (1395). مقایسه الگوریتم سبال با مدل SWAP و روش های محاسباتی جهت تعیین تبخیر و تعرق. علوم و مهندسی آبیاری, 39(3), 39-49.  https://dx.doi.org/10.22055/jise.2016.12341
یوسفی­سنگانی، کیوان.، و محمدزاده، حسین. (1388). تبادل آب­سطحی و زیرزمینی و چگونگی اندازه­گیری نشت آب. دومین کنفرانس سراسری آب، بهبهان، ایران. https://profdoc.um.ac.ir/paper-abstract-1015420.html
Abdollahi-Pourhaghighi, J., & Piri, J. (2009). The interaction of surface water-groundwater and its modeling. The first national conference on groundwater, Behbahan, Iran. https://civilica.com/doc/75379 [In Persian]
Anibas, ch., Buis, K., Verhoeven, R., Meire, P., & Batelaan, O. (2011). A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction. journal of hydrology, 397(1-2), 93-104. http://dx.doi.org/10.1016/j.jhydrol.2010.11.036
Bahreini, G., Safavi, H. (2008). Water Resources Interaction Modeling Using Satellite Images and GIS Techniques. Iran-Water Resources Research, 4(3), 14-26. http://www.iwrr.ir/article_15701.html [In Persian]
Dujardin, J., Anibas, C., Bronders, J., Jamin, P., Hamonts, K., Dejonghe, W., Brouyere, S., & Batelaan, O. (2014). Combining flux estimation techniques to improw characterization of groundwater-surface interaction in Zenne River Belgium. Hydrogeology Journal, 22, 1657-1668. http://dx.doi.org/10.1007/s10040-014-1159-4
Hirsch, RM., Slack, JM., & Smith, RA. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18(1), 107-121. https://doi.org/10.1029/WR018i001p00107
Javid, A., & Asghari Moghaddam, A. (2006). Analysis of the results of measuring the discharge of the Sangsiah River and its hydraulic relationship with the aquifer of Dehgolan plain. 10th Conference of the Geological Society of Iran, Tarbiat Modares University of Tehran, Iran. https://civilica.com/doc/28338 [In Persian]
Kendall, M. G. (1948). Rank correlation methods
Kikuchi, CP., Ferre, TPA., Welker, JM. (2012). Spatially telescoping measurements for improved characterization of groundwater-surface water interactions. Journal of Hydrologym ,446-447, 1-12. https://doi.org/10.1016/j.jhydrol.2012.04.002
Lashkaripour, G., Zareh, M., & Shahabeifard, F. (2004). The Effect of Water Extraction from Iranshahr Aquifer on Bampour River Base Flow. Geography and Development, 2(4), 113-130. https://dx.doi.org/10.22111/gdij.2004.3887 [In Persian]
Mann, HB. (1945). Non-parametric test against trend. Econometrica, 13, 245-259. http://dx.doi.org/10.2307/1907187
Rossi, PM., Ala-aho, P., Ronkanen, AK., & Klǿve, B. (2012). Groundwater-surface water interaction between an esker aquifer and draind fen. Jornal of Hydrology, 432-433,52-60. http://dx.doi.org/10.1016/j.jhydrol.2012.02.026
Sen, PK. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63,1379–1389. https://doi.org/10.2307/2285891
Sophocleous, M. (2002). Interactions between groundwater and surface water: the state of the science. Hydrogeology journal,10(1), 52-67. http://dx.doi.org/10.1007/s10040-014-1215-0
Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis. I. Nederlands Akad. Wetensch. Proc. 53, 386–392. https://ir.cwi.nl/pub/18448
Weber, KA., Perry, RG. (2006). Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA. Hydrogeology Journal, 14(7), 1252–1264.https://doi.org/10.1007/s10040-006-0040-5 
Wen, F., & Chen, X. (2006). Evaluation of the impact of groundwater irrigation on streamflow in Nebraska. Jornal of Hydrology, 327, 603-617. http://dx.doi.org/10.1016/j.jhydrol.2005.12.016
Winter, TC., Harvey, JW., Franke, OL., & Alley, WM. (1998). Ground Water and Surface Water a Single Resource. U.S. Geological Survey Circular 1139. https://doi.org/10.3133/cir1139
Yaghobzade, M., Izapanah, Z., Broomand Nasab, S., Seyed kaboli, H. (2016). The Comparison of SEBAL Algorithm with SWAP Model and Computational Method to Determine Evapotranspiration. Irrigation Sciences and Engineering, 39(3), 39-49. https://dx.doi.org/10.22055/jise.2016.12341 [In Persian]
Yousefisangani, K., & Mohammadzadeh, H. (2009) Surface and groundwater exchange and how to measure water leakage. Second National Water Conference, Behbahan, Iran.https://profdoc.um.ac.ir/paper-abstract-1015420.html [In Persian]
Yue, S., Pilon, P., Phinney, B., Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Journal of Hydrology Process, 16(9), 1807–1829. https://doi.org/10.1002/hyp.1095
Yue, S., Pilon, P., & Phinney, B. (2003). Canadian streamflow trend detection: impacts of serial and crosscorrelation. Hydrogical Sciences Journal, 48(1), 51-64. https://doi.org/10.1623/hysj.48.1.51.43478
Zhang, K., Kimball, J.S., & Running, S.W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3(6), 834-853.https://doi.org/10.1002/wat2.1168