حسونی زاده، هوشنگ. (1370). بررسی روشهای پیشبینی آبشستگی موضعی اطراف پایه پل. پایاننامه کارشناسی ارشد دانشگاه شهید چمران اهواز.
راهنمای محاسبهی آبشستگی موضعی(نشریه549). معاونت برنامهریزی و نظارت راهبردی رئیس جمهور، تهران.
رئیسی، نرگس.، و قمشی، مهدی. (1394). اثر مقیاس مدل و آزمایشهای آبشستگی پایههای پل. نشریه دانش آب و خاک، (3)25، 240-227. https://water-soil.tabrizu.ac.ir/article_4032.html
Abdallah Mohamed, Y., Mohamed Abdel-Aal, G., Hemdan Nasr-Allah, T., & shawky, A. (2016). Experimental and theoretical in vestigation of scour at bridge abutmentAbdallah. Journal of king saud university Engineering sciences, 28, 32-40. http://dx.doi.org/10.1016/j.jksues.2013.09.005
Bateni, S.M., Borghei, S. M., & Jeng, D.S. (2007). Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Engineering application of artificial intelligence, 20(3), 401-414. http://dx.doi.org/10.1016/j.engappai.2006.06.012
Begum, S.A., Fujail, A.K., & Barbhuiya, M.D. (2012). Artifical neural network to predict equilibrium local scour depht around semicireular bridge abutments. 6th International symposium on advances in science and technology. Kuala Lumpur. Malaysia. https://civilica.com/doc/158958
Blench, T. (1962). Discussion, of scour at bridge crossings. By Laursen EM. Transactions of American society of civil Engineers ,127, 180-183.
Breusers, H.N.C. (1965). Scour around drilling platforms. Bulletin of hydraulic research, 19, 276-286.
Breusers, H.N.C., Nicollet, G., & shen, H.W. (1997). Local scour around cylindrical piers. Journal of hydraulic research, 15(3), 211-252. https://doi.org/10.1080/00221687709499645
Chiew, Y.M. (1992). Scour protection at bridge piers. Journal of Hydraulic Engineering, 118(9),1260-1269. https://doi.org/ 10.1061/(ASCE)0733-9429(1992)118:9(1260)
Chou, J.S., Pham, A.D. (2014). Hybrid computational model for predicting bridge scour depth near APA pier and abutments. Automation in construction, 48, 88-96. http://dx.doi.org/10.1016/j.autcon.2014.08.006
Dey, S., & Barbhuiya, A.K. (2004). Clear-water scour at abutment in thinly armored beds. Journal of Hydraulic Engineering, 130(2), 622-634. https://doi.org/10.1016/S1001-6279(10)60041-8
Emamgholizadeh, S., Bateni, M.F.M., & Jeng, D.S. (2013). Artificial intelligence-based estimation of flushing half-cone geometry. Engineering Applications of Artificial Intelligence, 26 (10), 2551-2558. https://doi.org/10.1016/j.engappai.2013.05.014
Ettema, R., Melville B.W., & Borkdoll, B. (1998). Scale effect of pier-scour experiments. Journal of Hydraulic Engineering, 124(6), 639-642.
Ghazanfari Hashemi, S.G.H., & Etemad-Shahidi, A. (2012) Prediction of Scour Depth Around Bridge Pier by Support Vector Machines. MCEJ. 12(2) ,23-36. http://mcej.modares.ac.ir/article-16-5542-fa.html [In Persian]
Guide to calculating local scour (Journal 549). Vice President for Strategic Planning and Oversight, Tehran. [In Persian]
Hanrahan, G. (2011). Artificial neural networks in biological and environmental analysis. CRC Press. Boca raton. https://doi.org/10.1201/b10515
Hassoni Zadeh, H. (1991). Investigation of local scour prediction methods around the bridge pier. Master Thesis of Shahid Chamran University of Ahvaz. [In Persian]
Inglis, S.C. (1949). Maximum depth of scour at heads of guide banks and groynes, pier noses, and downstream of bridges. The behavior and control of rivers and canals. Poona. India.
Kambekar, A.R., & Deo, M.C. (2003). Estimation of piel group using neural network. Applied ocean Research (25), 225-234. https://dx.doi.org/10.22115/scce.2019.173862.1098
Laursen, E. M., & Toch, A. (1956). Scour around bridge piers and abutments. Bulletin no 4 lowa highway research board, ames lowa us publications.
Lee, S.O., & Sturm, T.W. (2009). Effect of sediment size scaling on physical modeling of bridge pier scour. Journal of Hydraulic Engineering, 135(10), 793-802. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000091
Melville, B.W. (1997). Pier and abutment scour –an integrated approach. Journal of Hydraulic Engineering, 123(2), 125-136. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125)
Melville, B.W., & Stherland, A.J. (1988). Design method for local scour at bridge piers. Journal of Hydraulic Engineering, 114(10). https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210)
Melville, M.W. (1975). Local scour at bridge sites. University of Auckland. School of Engineering. New Zealand. Project Report No. 117.
Neill, C. R. (1964). Riverbed scour-A review for engineers. Canadian Good Roads Association Technical Publication. Ottawa, Canada, 23.
Raeisi, N., & Ghomeshi, M. (2015). Effect of Model Scale in Bridge Piers Scour Experiments. Water and Soil Science, 25(3), 227-240. https://water-soil.tabrizu.ac.ir/article_4032.html [In Persian]
Raudkivi, A. J. (1998). Loose Boundary Hydraulics. https://doi.org/10.1201/9781003077800
Raudkivi, A.J., & Ettema, R. (1983). Clear-water scour at cylindrical piers. Journal of Hydraulic Engineering, 109(3), 338-350. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338)
Richardson, E.V., & lagasse, P.F. (1999). Stream stability and scour at highway bridges. ASCE Publications.