Quantitative assessment of groundwater resources and their relationship with land use changes and climatic factors (Case study: Chamchamal plain)

Document Type : Original Article

Authors

1 Department of Watershed management, Faculty of natural resources and marine sciences, Tarbiat modares university, Noor, Iran.

2 Department of watershed management, Faculty of natural resources and marine sciences , Tarbiat modares university, Noor, Iran.

3 Department of Hydraulics and water resources, Academic center for education, Culture and research (ACECR), Kermanshah, Iran.

Abstract

Objective The purpose of this study is to analyze the spatiotemporal pattern of groundwater levels using geostatistical methods, investigate the impact of land-use changes on groundwater level fluctuations, and examine hydrological factors (including meteorological drought and groundwater drought) influencing groundwater level variations.
 
Method: In this study, land use changes and climatic variations were evaluated as the most important human and environmental factors in groundwater level decline, and their relationship with groundwater levels in Chamchamal Plain was examined over a 25-year period. For this purpose, land use maps for three time periods (1990, 2003, and 2015) were obtained from Landsat TM, ETM+, and OLI satellite imagery using the Maximum Likelihood Classification method. Water level data from 21 piezometric wells were interpolated using Ordinary Kriging (OK) with minimum RMSE and MBE. The SPI and GRI indices were used to determine drought and wet periods.
 
Results: According to the results, agricultural, residential, and industrial areas increased by 2 times, more than 2 times, and more than 8 times, respectively. The maximum groundwater level decline was estimated at 22 meters in the southwestern part of the plain. The water table showed a decreasing trend, with an average decline of about 7 meters across the region. Pearson correlation coefficient between average groundwater level changes and average rainfall indicated that rainfall and groundwater level fluctuations occurred simultaneously with a 2-month lag.
 
Conclusions: Excessive groundwater extraction during droughts has intensified the decline and prevented recovery during wet periods, resulting in a persistent decreasing trend.

Keywords

Main Subjects


Ait M'Barek, S., Bouslihim, Y., Rochdi, A., Miftah, A., & Beroho, M. (2024). The combined impact of climate change scenarios and land use changes on water resources in a semi-arid watershed. Scientific African, 25, e02319.  https://doi.org/10.1016/j.sciaf.2024.e02319
Amini, A., & Hesami, A. (2017). The role of land use change on the sustainability of groundwater resources in the eastern plains of Kurdistan, Iran. Environmental Monitoring and Assessment, 189(6), 297-305. https://doi.org/10.1007/s10661-017-6014-3
Ammeish, E. S., Mabrouk, B. M., & Morsy, W. S. (2016). RS and GIS based approach for detecting landuse changes and its impact on the groundwater aquifer. Life Science Journal, 13(4), 62-74. https://www.lifesciencesite.com
Amraei, B.(2022). Detection of the effect of climate change on the drainage of Aquifer of Birjand plain. Journal of Geographical Sciences, 23(64), 291-305.                                      https://sid.ir/paper/965387/en (In Persian)
Arslan, H. (2014). Estimation of spatial distribution of groundwater level and risky areas of seawater intrusion on the coastal region in Çarşamba Plain, Turkey, using different interpolation methods. Environmental Monitoring and Assessment, 186(8), 5123-5134. https://doi.org/10.1007/s10661-014-3764-z
Aryasadr, M., Rahimi, D., Amiri, H., & Zand, M. (2024). Impact of Climate Change on Groundwater in Cham Anjir Aquifer. Spatial Planning14(4), 53-80.                             https://doi.org/10.22108/sppl.2024.141550.1790 (In Persian)
Asghari, S. , Safari, S., & mollanouri, E. (2024). Investigating the height changes of the land surface using the SBAS radar interferometry technique in a part of Sarab county. Journal of Geography and Planning28(89), 1-16. https://doi.org/ 10.22034/gp.2023.55307.3099 (In Persian)
Bamal, A., Uddin, M. G., & Olbert, A. I. (2024). Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review. Heliyon, 10(17), e37073. https://doi.org/10.1016/j.heliyon.2024.e37073
Carmona, G., Varela-Ortega, C., & Bromley, J. (2013). Supporting decision making under uncertainty: Development of a participatory integrated model for water management in the middle Guadiana river basin. Environmental Modelling & Software, 50, 144-157. https://doi.org/10.1016/j.envsoft.2013.09.007
Cemek, B., Güler, M., Kılıc, K., Demir, Y., & Arslan, H. (2007). Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey. Environmental Monitoring and Assessment, 124(1-3), 223-234. https://doi.org/10.1007/s10661-006-9220-y
Christakos, G. (2000). Modern spatiotemporal geostatistics. Oxford University Press Publications, Oxford, England.                                           https://books.google.com/books/about/Modern_Spatiotemporal_Geostatistics.html?id=dNXnCwAAQBAJ
Cochand, F., Brunner, P., Hunkeler, D., Rössler, O., & Holzkämper, A. (2021). Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Science of the Total Environment, 798, 148759.                                           https://doi.org/10.1016/j.scitotenv.2021.148759
Dams, J., Woldeamlak, S. T., & Batelaan, O. (2008). Predicting land-use change and its impact on the groundwater system of the Kleine Nete catchment. Hydrology and Earth System Sciences, 12(6), 1369-1385. https://doi.org/10.5194/hess-12-1369-2008
Delbari, M., Motlagh, M. B., Kiani, M., & Amiri, M. (2013). Investigating spatio-temporal variability of groundwater quality parameters using geostatistics and GIS. International Research Journal of Applied and Basic Sciences, 4(12), 3623-3632.            https://scholar.google.com/scholar?hl=fa&as_sdt=0%2C5&q=Investigating+spatio-temporal+variability+of+groundwater+quality+parameters+using+geostatistics+and+GIS.
Deng, L., & Shangguan, Z. P. (2016). Afforestation drives soil carbon and nitrogen changes in China. Land Degradation & Development, 27(2), 144-156. https://doi.org/10.1002/ldr.2537
Emadodin, S., & Nazari gazik, Z. (2023). Estimation of Subsidence Rate and Groundwater Level Changes in Mashhad Plain. Geography and Development21(73), 221-239. https://doi.org/ 10.22111/gdij.2023.8029 (In Persian)
Gleeson, T., Alley, W. M., Allen, D. M., Sophocleous, M. A., Zhou, Y., Taniguchi, M., & VanderSteen, J. (2012). Towards sustainable groundwater use: Setting long-term goals, backcasting, and managing adaptively. Groundwater, 50(1), 19-26. https://doi.org/ 10.1111/j.1745-6584.2011.00825.x
Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press Publications, Oxford, England. https://global.oup.com/academic/product/geostatistics-for-natural-resources-evaluation-9780195115383?cc=ir&lang=en&
Hejazian, M., Gurdak, J. J., Swarzenski, P., Odigie, K. O., & Storlazzi, C. D. (2017). Land-use change and managed aquifer recharge effects on the hydrogeochemistry of two contrasting atoll island aquifers, Roi-Namur Island, Republic of the Marshall Islands. Applied Geochemistry, 80, 58-71. https://doi.org/10.1016/j.apgeochem.2017.03.006
Indhanu, N., Chalermyanont, T., & Chub-Uppakarn, T. (2025). Spatial assessment of land use and land cover change impacts on groundwater recharge and groundwater level: A case study of the Hat Yai basin. Journal of Hydrology: Regional Studies, 57, 102097. https://doi.org/10.1016/j.ejrh.2024.102097
Issaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford University Press Publications, Oxford, England. https://www.amazon.com/Introduction-Applied-Geostatistics-Edward-Isaaks/dp/0195050134
Kambhammettu, B. V. N. P., Allena, P., & King, J. P. (2011). Application and evaluation of universal kriging for optimal contouring of groundwater levels. Journal of Earth System Science, 120(3), 413-422. https://doi.org/10.1007/s12040-011-0075-4
Keeler, B. L., & Polasky, S. (2014). Land-use change and costs to rural households: A case study in groundwater nitrate contamination. Environmental Research Letters, 9(7), 074002. https://ioppublishing.org/contacts/
Kumar, S., & Sondhi, S. K. (2005). Network design for groundwater level monitoring in upper Bari Doab canal tract, Punjab, India. Irrigation and Drainage, 54(4), 431-442. https://doi.org/10.1002/ird.194
Kuroda, K., Hayashi, T., Do, A. T., Canh, V. D., Nga, T. T. V., Funabiki, A., & Takizawa, S. (2017). Groundwater recharge in suburban areas of Hanoi, Vietnam: Effect of decreasing surface-water bodies and land-use change. Hydrogeology Journal, 25(3), 727-742. https://doi.org/10.1007/s10040-016-1528-2
Lee, J. Y., Yi, M. J., Moon, S. H., Cho, M., Won, J. H., Ahn, K. H., & Lee, J. M. (2007). Causes of the changes in groundwater level at Daegu, Korea: The effect of subway excavations. Bulletin of Engineering Geology and the Environment, 66(3), 251-258. https://doi.org/10.1007/s10064-006-0074-x
Liu, X., Wang, Y., & Zhang, H. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology, 377(1-2), 35-42. https://doi.org/10.1016/j.jhydrol.2009.08.007
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-184. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=2099290
Mendicino, G., Senatore, A., & Versace, P. (2008). A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Journal of Hydrology, 357(3-4), 282-302. https://doi.org/10.1016/j.jhydrol.2008.05.005
Mishra, N., & Kumar, S. (2015). Impact of land use change on groundwater recharge in Haridwar District. 20th International Conference on Hydraulics, Water Resources and River Engineering, IIT Roorkee, India. https://www.researchgate.net/publication/289538156_Impact_Of_Land_Use_Change_on_Groundwater_Recharge_in_Haridwar_District
Mohammdy, M., Moradi, H. R., Zeinivand, H., & Temme, A. J. A. M. (2015). A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran. International Journal of Environmental Science and Technology, 12(5), 1515-1526. https://doi.org/10.1007/s13762-014-0728-3
Moradi, H. R., Rajabi, M., & Faragzadeh, M. (2011). Investigation of meteorological drought characteristics in Fars province, Iran. Catena, 84(1-2), 35-46. https://doi.org/10.1016/j.catena.2010.08.016
Nami, M. H, & Naderi, M. (2024). Assessments of Land Subsidence in the Tehran Metropolitan Using Satellite Radar Interferometry Technique. Disaster Prev. Manag. Know,14 (2),138-157. http://dpmk.ir/article-1-695-fa.html (In Persian)
Narany, T. S., Aris, A. Z., Sefie, A., & Keesstra, S. (2017). Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Science of the Total Environment, 599-600, 844-853.                           https://doi.org/10.1016/j.scitotenv.2017.04.171
Omran, E. S. E. (2012). A proposed model to assess and map irrigation water well suitability using geospatial analysis. Water, 4(3), 545-567. https://doi.org/10.3390/w4030545
Owuor, S. O., Butterbach-Bahl, K., Guzha, A. C., Rufino, M. C., Pelster, D. E., Díaz-Pinés, E., & Breuer, L. (2016). Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecological Processes, 5(1), 16. https://doi.org/10.1186/s13717-016-0060-6
Reghunath, R., Sreedhara Murthy, T. R., & Raghavan, B. R. (2005). Time series analysis to monitor and assess water resources: A moving average approach. Environmental Monitoring and Assessment, 109(1-3), 65-72. https://doi.org/10.1007/s10661-005-5838-4
Richards, J. A., & Jia, X. (2005). Remote sensing digital image analysis. Springer Publications, New York City, United States. http://dx.doi.org/10.1007/3-540-29711-1
Sajjad, M. M., Wang, J., Abbas, H., Ullah, I., Khan, R., & Ali, F. (2022). Impact of climate and land-use change on groundwater resources, study of Faisalabad district, Pakistan. Atmosphere, 13(7), 1097. https://doi.org/10.3390/atmos13071097
Schiedek, T., Beier, M., & Ebhardt, G. (2008). Monitoring urban impact on groundwater quality: Statistical analyses in Darmstadt, Germany. Geophysical Research Abstracts, 10, EGU2008-A-10275. https://doi.org/10.13140/2.1.1169.3449
Shimelis, B. G., Alamirew, T., Merkel, B. J., & Melesse, A. M. (2015). Land use and land cover change impact on groundwater recharge: The case of Haramaya Lake Watershed, Ethiopia. In Landscape dynamics, soils and hydrological processes in varied climates, 93-111, Springer Publications, New York City, United States.                               https://link.springer.com/chapter/10.1007/978-3-319-18787-7_6
Shirmohammadi, B., Moradi, H. R., Moosavi, V., Taie Semiromi, M., & Zeinali, A. (2013). Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (Case study: Southeastern part of east Azerbaijan province, Iran). Natural Hazards, 69(1), 386-402. https://doi.org/10.1007/s11069-013-0716-9
Singh, O., & Kasana, A. (2017). GIS-based spatial and temporal investigation of groundwater level fluctuations under rice-wheat ecosystem over Haryana. Journal of the Geological Society of India, 89(5), 554-562. https://doi.org/10.1007/s12594-017-0644-5
Singh, S., Singh, C., & Mukherjee, S. (2010). Impact of land-use and land-cover change on groundwater quality in the Lower Shiwalik hills: A remote sensing and GIS based approach. Open Geosciences, 2(2), 124-131. https://doi.org/10.2478/v10085-010-0003-x
Wang, J., Gao, Y., & Wang, S. (2015). Land use/cover change impacts on water table change over 25 years in a desert-oasis transition zone of the Heihe River Basin, China. Water, 8(1), 11. https://doi.org/10.3390/w8010011
WWAP (United Nations World Water Assessment Programme). (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO, Paris, France. https://www.unwater.org/publications/un-world-water-development-report-2015
Xiao, D. N., Li, X. Y., Song, D. M., & Yang, G. J. (2006). Spatial-temporal dynamics simulation of groundwater mining in Minqin Oasis. Science in China Series D: Earth Sciences, 49(6), 567-578. https://doi.org/10.1007/s11430-007-2001-9
Xiuwan, C. (2002). Using remote sensing and GIS to analyze land cover change and its impacts on regional sustainable development. International Journal of Remote Sensing, 23(1), 107-124. https://doi.org/10.1080/01431160010007051
Zhou, Z., Zhang, G., Yan, M., & Wang, J. (2012). Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai Sea, North China. Environmental Monitoring and Assessment, 184(6), 3697-3710. https://doi.org/10.1007/s10661-011-2217-1