Smart technologies in agriculture: water and resource management in the Era of climate change

Document Type : Original Article

Authors

1 Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), East Azerbaijan, Maragheh, Iran.

2 Agricultural Engineering Research Institute (AERI), Agricultural Research , Education and Extension Organization ( AREEO), Karaj, Iran.

3 Agricultural Engineering Research Institute (AERI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.

4 Department of Water Sciences and Engineering, Imam Khomeini International University, Qazvin., Iran

Abstract

Objective: Driven by the motivation to find innovative and efficient solutions for irrigation management, this research delves into the precise examination of indirect methods for measuring soil moisture and advanced techniques in automated and smart irrigation. Its ultimate goal is to explore current knowledge and evaluate new approaches that can, while optimizing water consumption and increasing productivity, effectively address the complex technical challenges in this field. With a focus on practical and sustainable solutions, this study strives to establish a foundation for the development of smart and environmentally friendly agriculture.
 
Method: The study reviews sensors used in smart agriculture (rainfall, temperature, etc.) and equipment for irrigation, frost monitoring, plant protection, and crop monitoring. It analyzes their features to optimize farming and reduce resource use, improving efficiency and sustainability.
 
Results: Smart technologies can boost agricultural efficiency and productivity, especially for water management in water-scarce countries like Iran, making smart agriculture essential. While proven in developed countries, Iran needs specific infrastructure for success. Intelligent systems improve plant performance, cut water waste, and reduce pollution. With internet access in rural areas, smart irrigation, using sensors like TDR and PR2, can automate irrigation via the Internet of Things. Important factors include sensor accuracy, power, cost, and salinity effects. Two-way wireless networks (WSAN) enable monitoring and control of irrigation. Future planning should combine soil, water, and climate monitoring with predictive control, focusing on dynamic processes and the impact of intelligent monitoring on irrigation efficiency, given the uncertainties in agricultural-irrigation systems.
 
Conclusions: With the power to prevent diseases, protect crops from frost, and eliminate storage losses, these technologies revolutionize the efficiency and performance of agricultural processes. Ultimately, implementing smart agriculture and using soil moisture sensors goes beyond just saving water; it's an unparalleled strategy for overcoming climate challenges and the overwhelming pressures on agricultural systems.

Keywords

Main Subjects


Asefa, A., & Tadesse, M. (2024). Pros and Cons of Different Irrigation Scheduling Approaches: A Review. American Journal of Bioscience and Bioengineering, 12(6), 91-96. https://doi.org/10.11648/j.bio.20241206.11
Azar, A. T., Ammar, H. H., de Brito Silva, G., & Razali, M. S. A. B. (2019). Optimal proportional integral derivative (PID) controller design for smart irrigation mobile robot with soil moisture sensor. In International Conference on Advanced Machine Learning Technologies and Applications , Springer, Cham, New York Sity, United states.  https://doi.org/10.1007/978-3-030-14118-9_35
Bagheri, N. (2019). Information Technology an infrastructure for development of intelligent agriculture. Agricultural Information Sciences and Technology2(1), 35-49. https://doi.org/10.22092/aistj.2019.125170.1024  )In Persian(
Barideh, R., Besharat, S., Morteza, M., & Rezaverdinejad, V. (2018). Effects of Partial Root-Zone Irrigation on the Water Use Efficiency and Root Water and Nitrate Uptake of Corn. Water, 10, 526. https://doi.org/10.3390/w10040526
Besharat, S., & Khorsand, A. (2023). Advanced subjects in the water, soil and plant (Measurement Devices and Practical Software). Urmia University Press, Urmia, Iran. https://cl.urmia.ac.ir/node/4438 (In Persian)
Biabi, H., Mehdizadeh, S. A., & Salmi, M. S. (2019). Design and implementation of a smart system for water management of lilium flower using image processing. Computers and Electronics in Agriculture, 160, 131-143. https://doi.org/10.1016/j.compag.2019.03.019
Cerovic, Z. G., Ghozlen, N. B., Milhade, C., Obert, M., Debuisson, S., & Moigne, M. L. (2015). Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on dualex leaf-clip measurements in the field. Journal of Agricultural and Food Chemistry, 63(14), 3669-3680. https://doi.org/10.1021/acs.jafc.5b00304
Chidambaranathan, C. M., Hand, S. S., & Ramanamurthy, M. V. (2018). Development of smart farming—a detailed study. International Journal of Engineering and Technology, 7(2.4), 56-58. https://doi.org/10.14419/ijet.v7i2.4.10042
Clarke Topp, G., & Ferré, P. A. T. (2018). 3.1 Water Content. Methods of Soil Analysis, 417–545. https://doi.org/10.2136/sssabookser5.4.c19
De Pinto, A., Cenacchi, N., Kwon, H. Y., Koo, J., & Dunston, S. (2020). Climate smart agriculture and global food-crop production. PLOS ONE, 15(4), 1–19.                              https://doi.org/10.1371/journal.pone.0231764
Di Gennaro, S.F., Cini, D., Berton, A., & Matese, A. (2024). Development of a low-cost smart irrigation system for sustainable water management in the Mediterranean region. Smart Agricultural Technology. 9,100629. https://doi.org/10.1016/j.atech.2024.100629
Elahdadi, H., Latifmanesh, H., & Moradi, A. (2024). The effect of sustainable agriculture approach from an ecological perspective on ensuring food security. Defense readiness and technology, (4)6, 133-164. https://amfad.sndu.ac.ir/article_2706.html (In Persian)
FAO. (2022). AQUASTAT - FAO’s global information system on water and agriculture. FAO, Quebec City, Canada. https://www.fao.org/aquastat/en
Fuentes-Peñailillo, F., Ortega-Farías, S., Acevedo-Opazo, C., Rivera, M., & Araya-Alman, M. (2024). A Smart Crop Water Stress Index-Based IoT Solution for Precision Irrigation of Wine Grape. Sensors, 24(1), 25. https://doi.org/10.3390/s24010025
Gamal, Y., Soltan, A., Said, L. A., Madian, A. H., & Radwan, A. G. (2024). Smart Irrigation Systems: Overview. IEEE Access, 1–1. https://doi.org/10.1109/access.2023.3251655
Gerami Tayyibi, M. (2017). Farms and Future Agriculture: Small and Smart. http://ayandehpajoohi.com/articles futurestudies/ (In Persian)
Hammouch, H., A.EI-Yacoubi, M., Qin, H. & Berbia, H. (2024). A Systematic Review and Meta-Analysis of Intelligent Irrigation Systems. IEEE Access, 12, 128285-128304. https://doi.org/10.1109/ACCESS.2024.3421322
Hardie, M. (2020). Review of novel and emerging proximal soil moisture sensors for use in agriculture. Sensors, 20(23), 6934. https://doi.org/10.3390/s20236934
Hassani, Y., Hashemy Shahdany, S. M., & Zahraei, B. (2020). Developing A New Operation-Economic Framework for Irrigation Networks without Water Market. Journal of Water and Soil Science, 24(1), 27-43. http://dx.doi.org/10.47176/jwss.24.1.39232 )In Persian(
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., & Bryan, B. A. (2021). Future global urban water scarcity and potential solutions. Nature Communications, 12(1), 4667. https://doi.org/10.1038/s41467-021-25026-3
Kaya, S., & Curran, P. J. (2006). Monitoring urban growth on the European side of the Istanbul metropolitan area: A case study. International Journal of Applied Earth Observation and Geoinformation, 8(1), 18–25. https://doi.org/10.1016/j.jag.2005.05.002
Kazem Alilou, V., & Jamshidi, B. (2023). Application of artificial intelligence in climate smart agriculture. Agricultural Information Sciences and Technology5(2), 51-60. https://doi.org/10.22092/jaist.2023.362065.1090 )In Persian(
Keshavarz, A., Fakari Sardhaei, B., Beiki, A., Khosravi, A., Farsi, M. M., Malekian, R., & Najandali, A. (2021). Collection of documents related to the national and strategic document for food security development; Challenges of the country's agricultural sector. Agricultural Education Publication, Tehran, Iran. https://agrilib.areeo.ac.ir/book_9920.html (In Persian)
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Heris, A. M., Rahimi, A., & Besharat, S. (2020). Response of maize and black gram yield and water productivity to variations in canopy temperature and crop water stress index. International Agrophysics, 34(3), 381-390. https://doi.org/10.31545/intagr/126439
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni Heris, A., Rahimi, A., Besharat, S., & Sadraddini, A. A. (2019). Determination of A Crop Water Stress Index (CWSI) For Detecting Water Stress time of Maize Crop in the Urmia Region. Iranian Journal of Soil and Water Research50(4), 873-884. https://doi.org/10.22059/ijswr.2018.261912.667967 )In Persian(
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni Heris, A., Rahimi, A., & Besharat, S. (2020). Irrigation scheduling of Black Gram based on Crop Water Stress Index (CWSI) under drip irrigation. Iranian Journal of Soil and Water Research50(9), 2125-2138.                                                                                      https://doi.org/10.22059/ijswr.2019.280132.668179)In Persian(
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni-Heris, A., Rahimi, A., & Besharat, S. (2019). Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes. Agricultural Water Management, 224, 105740. https://doi.org/10.1016/j.agwat.2019.105740
Khorsand, A., Rezaverdinejad, V., Asgarzadeh, H., Majnooni-Heris, A., Rahimi, A., Besharat, S., & Sadraddini, A. A. (2021). Linking plant and soil indices for water stress management in black gram. Scientific Reports, 11, 869. https://doi.org/10.1038/s41598-020-79516-3
Lekshmi, S. U., Singh, D. N., & Baghini, M. S. (2014). A critical review of soil moisture measurement. Measurement, 54, 92–105. https://doi.org/10.1016/j.measurement.2014.04.007
Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., & Branca, G. (2018). Climate smart agriculture: Building resilience to climate change. Natural Resource Management and Policy, Springer International Publishing, 52, Springer, New York Sity, United states. https://doi.org/10.1007/978-3-319-61194-5
Mohammadi, A., Besharat, S., & Abbasi, F. (2019). Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation. Agricultural Water Management, 213, 1116-1129. https://doi.org/10.1016/j.agwat.2018.11.007
Nhamo, N., Chikoye, D., & Gondwe, T. (2017). Preface. Smart Technologies for Sustainable Smallholder Agriculture, xv–xvi. https://doi.org/10.1016/b978-0-12-810521-4.05001-5
Pourkarimi, B., Niknami, M., & Jourabloo, M. (2014). Extension Requirements of Drip Irrigation Systems in Tehran Province. Journal of Water Research in Agriculture28(2), 315-328. https://doi.org/10.22092/jwra.2014.100033 )In Persian(
Sabet, F., & Mohammadpour, M. (2021). Smart farming. Agricultural Information Sciences and Technology4(1), 49-58. https://doi.org/10.22092/aistj.2022.359077.1067 )In Persian(
Singh, C. D., Rao, K. V., Kumar, M., & Rajwade, Y. A. (2023). Development of a smart IoT‐based drip irrigation system for precision farming. Irrigation and Drainage, 72(1), 21–37. https://doi. org/10.1002/ird.2757
SOLAW. (2021). The State of the World’s Land and Water Resources for Food and Agriculture – Systems at breaking point. FAO, Quebec City, Canada.  https://doi.org/10.4060/cb7654en
Tabatabaei, S. M., Dastourani, M., Eslamian, S., & Nazeri Tahroudi, M. (2022). Ranking and optimizing the rain-gauge networks using the entropy–copula approach (Case study of the Siminehrood Basin, Iran). Applied Water Science, 12(9), 214. https://doi.org/10.1007/s13201-022-01735-y
Topp, G. C., & Davis, J. L. (1985). Measurement of soil water content using time‐domain reflectrometry (TDR): a field evaluation. Soil Science Society of America Journal, 49(1), 19-24. https://doi.org/10.2136/sssaj1985.03615995004900010003x
Tosan, M., Khashei-Siuki, A., Maroosi, A., & Gharib, M. R. (2024). A Review of Smart Water Management for Sustainable Agriculture Based on the Internet of Things. Water Management in Agriculture11(1), 145-166. https://wmaj.iaid.ir/article_185939.html )In Persian(
Vera, J., Abrisqueta, I., Conejero, W., & Ruiz-Sanchez, M. C. (2017). Precise sustainable irrigation: A review of soil-plant-atmosphere monitoring. Acta Horticulturae, 1150, 195–200. https://doi.org/10.17660/ActaHortic.2017.1150.28
Vera, J., Conejero, W., Mira-Garcia, A. B., Conesa, M. R., & Ruiz-Sánchez, M. C. (2021). Towards irrigation, automation based on dielectric soil sensors. The Journal of Horticultural Science and Biotechnology, 96(6), 696-707. https://doi.org/10.1080/14620316.2021.1906761