Aalami, M., Abbasi, H., & Niksokhan, M. (2018). Comparison of two Calibration-Uncertainty Methods for Soil and Water Assessment Tool in Stream Flow and Total Suspended Solids Modeling. Water and Soil Science, 28(3), 53-64. https://water-soil.tabrizu.ac.ir/article_8123.html (In Persian)
Abbas NovinPour, E., Mohammad Hoseinzadeh, M., & Rezaie, H. (2019). The effect of reservoir dam construction on groundwater fluctuations (Case study Reservoir Dam ShahreChay, Urmia Plain, IRAN). Journal of Water and Soil Conservation, 26(4), 75-93. https://doi.org/10.22069/jwsc.2019.16103.3144 (In Persian)
Abdalla, O.A. (2009). Groundwater modeling in semiarid Central Sudan: adequacy and long-term abstraction. Arabian Journal of Geosciences, 2(4), 321-335. https://doi.org/10.1007/s12517-009-0042-4
Abedi Koupai, J., & Golabchian, M. (2015). Estimation of Hydrodynamic Parameters of Groundwater Resources in Kouhpayeh- Segzi Watershed Using MODFLOW. Journal of Water and Soil Science, 19 (72),281-293. http://dx.doi.org/10.18869/acadpub.jstnar.19.72.24 (In Persian)
Abiye, T., Masindi, K., Mengistu, H., & Demlie, M. (2018). Understanding the groundwater level fluctuations for better management of groundwater resource: a case in the Johannesburg region. Groundw. Sustain. Develop, 7, 1–7. https://doi.org/10.1016/j.gsd.2018.02.004
Aghlmand, R., & Abbasi, A. (2019). Application of MODFLOW with boundary conditions analyses based on limited available observations: A case study of Birjand plain in East Iran. Water, 11(9), 1904. https://doi.org/10.3390/w11091904
Ahmadzadeh, H., Morid, S., & Delavar, M. (2014). Assessment of changes in agricultural crop yields and inflows to Lake Urmia in Zarrinehrud River basin due to changing irrigation systems from surface to pressurized using the SWAT model. Iranian Journal of Irrigation & Drainage, 8(1), 1-15. https://idj.iaid.ir/article_54532.html (In Persian)
Ahmed, K. A., & Altunkaynak, A. (2020). Modeling groundwater flow and seawater intrusion in the Terkos Lake aquifer due to Canal Istanbul excavation. Arabian Journal of Geosciences, 13(1), 10. https://doi.org/10.1007/s12517-019-4983-y
Aizen, V., Aizen, E., Glazirin, G., & Loaiciga, H. A. (2000). Simulation of daily runoff in Central Asian alpine watersheds. Journal of hydrology, 238(1-2), 15-34. https://doi.org/10.1016/s0022-1694 (00)00319-x
Akoko, G., Le, T. H., Gomi, T., & Kato, T. (2021). A review of SWAT model application in Africa. Water, 13(9), 1313. https://doi.org/10.3390/w13091313
Alfaifi, H. J., Abdelfatah, M. S., Abdelrahman, K., Zaidi, F. K., Ibrahim, E., & Alarifi, N. S. (2017). Groundwater management scenarios for the Biyadh-Wasia aquifer systems in the eastern part of Riyadh region, Saudi Arabia. Journal of the Geological Society of India, 89(6), 669-674. https://doi.org/10.1007/s12594-017-0676-x
Aliyari, F., Bailey, R. T., Tasdighi, A., Dozier, A., Arabi, M., & Zeiler, K. (2019). Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environmental Modelling & Software, 115, 200-210. https://doi.org/10.1016/j.envsoft.2019.02.014
Aloui, S., Mazzoni, A., Elomri, A., Aouissi, J., Boufekane, A., & Zghibi, A. (2023). A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management, 326, 116799. https://doi.org/10.1016/j.jenvman.2022.116799
Alvarez, M., Trovatto, M. M., Hernández, M. A., & González, N. (2012). Groundwater flow model, recharge estimation and sustainability in an arid region of Patagonia, Argentina. Environmental Earth Sciences, 66(7), 2097-2108. https://doi.org/10.1007/s12665-011-1435-8
Aly, M. M., Sakr, S. A., & Fayad, S. A. (2019). Evaluation of the impact of Lake Nasser on the groundwater system in Toshka under future development scenarios, Western Desert, Egypt. Arabian Journal of Geosciences, 12(17), 553. https://doi.org/10.1007/s12517-019-4701-9
Arnold, J. G., & Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes: An International Journal, 19(3), 563-572.https://doi.org/10.1002/hyp.5611
Arumí, J. L., Rivera, D., Holzapfel, E., Boochs, P., Billib, M., & Fernald, A. (2009). Effect of the irrigation canal network on surface and groundwater interactions in the lower valley of the Cachapoal river, Chile [Efecto de la red de canales de riego en las interacciones de agua superficial y subterránea en la parte baja del valle del Río Cachapoal, Chile]. Chilean Journal of Agricultural Research 69, Nr. 1, 69(1), 12-20. https://doi.org/10.4067/s0718-58392009000100002
Asghari Sersekanroud, S., & Saeedi Seta, A. (2023). Investigating the Effects of Land Use Changes on the Runoff of Qara Chai River Basin Using the SWAT Model. Geography and Environmental Planning, 34(3), 95-118. https://doi.org/10.22108/gep.2023.134432.1535 (In Persian)
Aslam, R. A., Shrestha, S., Usman, M. N., Khan, S. N., Ali, S., Sharif, M. S., ... & Arshad, A. (2022). Integrated SWAT-MODFLOW modeling-based groundwater adaptation policy guidelines for lahore, Pakistan under projected climate change, and human development scenarios. Atmosphere, 13(12), 2001. https://doi.org/10.3390/atmos13122001
Baalousha, H. M., Fahs, M., Ramasomanana, F., & Younes, A. (2019). Effect of pilot-points location on model calibration: Application to the northern karst aquifer of Qatar. Water, 11(4), 679. https://doi.org/10.3390/w11040679
Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing regional‐scale spatio‐temporal patterns of groundwater–surface water interactions using a coupled SWAT‐MODFLOW model. Hydrological processes, 30(23), 4420-4433. https://doi.org/10.1002/hyp.10933
Barazzuoli, P., Nocchi, M., Rigati, R., & Salleolini, M. (2008). A conceptual and numerical model for groundwater management: a case study on a coastal aquifer in southern Tuscany, Italy. Hydrogeology Journal, 8(16), 1557-1576. https://doi.org/10.1007/s10040-008-0324-z
Barthel, R., & Banzhaf, S. (2016). Groundwater and surface water interaction at the regional-scale–a review with focus on regional integrated models. Water resources management, 30(1), 1-32. https://doi.org/10.1007/s11269-015-1163-z
Bedekar, V., Niswonger, R.G., Kipp, K., Panday. S., & Tonkin, M. (2012). Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW. Ground Water, 187–198. https://doi.org/10.1111/j.1745-6584.2011.00829.x
Bejranonda, W., Koontanakulvong, S., & Koch, M. (2007). Surface and Groundwater Dynamic Interactions in the Upper Great Chao Phraya Plain of Thailand: Semi-Coupling of SWAT and MODFLOW; Groundwater and Ecosystems, IAH Selected Papers on Hydrogeolgy; International Association of Hydrology: Goring, UK, 17–21. https://doi.org/10.1007/s12665-011-1007-y
Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Dile, Y. T., Tsubo, M., Fenta, A. A., ... & Srinivasan, R. (2020). Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Science of the Total Environment, 747, 141118. https://doi.org/10.1016/j.scitotenv.2020.141118
Calderón Palma, H., & Bentley, L. R. (2007). A regional-scale groundwater flow model for the Leon-Chinandega aquifer, Nicaragua. Hydrogeology Journal, 15(8), 1457-1472. https://doi.org/10.1007/s10040-007-0197-6
Carroll, R. W., Pohll, G., McGraw, D., Garner, C., Knust, A., Boyle, D., ... & Pohlmann, K. (2010). Mason Valley Groundwater Model: Linking Surface Water and Groundwater in the Walker River Basin, Nevada 1. Journal of the American Water Resources Association, 46(3), 554-573. https://doi.org/10.1111/j.1752-1688.2010.00434.x
Chen, Y., Niu, J., Sun, Y., Liu, Q., Li, S., Li, P., ... & Li, Q. (2020). Study on streamflow response to land use change over the upper reaches of Zhanghe Reservoir in the Yangtze River basin. Geoscience Letters, 7, 1-12. https://doi.org/10.1186/s40562-020-00155-7
Chezgi, J., & Hamedi, E. (2023). Flood Prioritization of Sarbaz River Sub-Basins Using SWAT Model. Journal of Drought and Climate Change Research, 1(3), 73-86. https://doi: 10.22077/jdcr.2023.6478.1026 (In Persian)
Chitsazan, M., javadchavoshi, Z., & Nassery, H. (2015). Predicting aquifer-river interactions using MODFLOW in the Dosalagh plain, Khuzestan Province. Iranian Water Researches Journal, 9(4), 139-147. https://iwrj.sku.ac.ir/article_11104.html (In Persian)
Chowdhury, A., & Rahnuma, M. (2023). Groundwater contaminant transport modeling using MODFLOW and MT3DMS: a case study in Rajshahi City. Water Practice & Technology, 18(5), 1255-1272. https://doi.org/10.2166/wpt.2023.076
Chu, T. W., & Shirmohammadi, A. (2004). Evaluation of the SWAT model’s hydrology component in the piedmont physiographic region of Maryland. Transactions of the ASAE, 47(4), 1057-1073. https://doi.org/10.3724/sp.j.1227.2011.00164
Chung, I. M., Kim, N. W., Lee, J., & Sophocleous, M. (2010). Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: application to Mihocheon watershed, South Korea. Hydrogeology Journal, 18(5), 1253. https://doi.org/10.1007/s10040-010-0593-1
Chunn, D., Faramarzi, M., Smerdon, B., & Alessi, D. S. (2019). Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in West-Central Alberta. Water, 11(1), 110. https://doi.org/10.3390/w11010110
Correa-González, A., Hernández-Bedolla, J., Martínez-Cinco, M. A., Sánchez-Quispe, S. T., & Hernández-Hernández, M. A. (2023). Assessment of nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model. Hydrology, 10(11), 209. https://doi.org/10.3390/hydrology10110209
Dadafarid, S., Hessari, B., & Abghari, H. (2019). Modelling of interaction between Urmia Lake water level and costal aquifer with GMS. Iranian Water Researches Journal, 13(2), 129-137. https://iwrj.sku.ac.ir/article_10648.html (In Persian)
Deb, P., Kiem, A. S., & Willgoose, G. (2019). A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology, 575, 273-291. https://doi.org/10.1016/j.jhydrol.2019.05.039
Devia, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A review on hydrological models. Aquatic procedia, 4, 1001-1007. https://doi.org/10.1016/j.aqpro.2015.02.126
Dousti Rezaie, M., Zeinalzadeh, K., Besharat, S., & Amirataee, B. (2022). Effects of Management and Climate Scenarios on Groundwater Level Changes: Case Numerical Modeling Study in Salmas Plain Aquifer. Iranian Journal of Irrigation & Drainage, 16(2), 280-293. https://dorl.net/dor/20.1001.1.20087942.1401.16.2.2.1 (In Persian)
Dowlatabadi, S., & Ali Zomorodian, S. M. (2016). Conjunctive simulation of surface water and groundwater using SWAT and MODFLOW in Firoozabad watershed. KSCE Journal of Civil Engineering, 20(1), 485-496. https://doi.org/10.1007/s12205-015-0354-8
Ebrahimi, P., Salimi Kochi, J., & Mohseni Saravi, M. (2018). Calibration and validation of SWAT Model in runoff simulation, case study: Neka Watershed. Watershed Engineering and Management, 10(3), 266-279. https://doi: 10.22092/ijwmse.2018.117332 (In Persian)
Ehtiat, M., Jamshid Mousavi, S., & Srinivasan, R. (2018). Groundwater modeling under variable operating conditions using SWAT, MODFLOW and MT3DMS: A catchment scale approach to water resources management. Water resources management, 32, 1631-1649. https://doi.org/10.1007/s11269-017-1895-z
El Saeed, G. H., Abdelmageed, N. B., Riad, P., & Komy, M. (2020). Ensuring sustainable development through groundwater management, area one, south western desert, Egypt. Indonesian Journal of Electrical Engineering and Computer Science, 17(3), 1584-1593. https://doi.org/10.11591/ijeecs.v17.i3.pp1584-1593
El Yaouti, F., El Mandour, A., Khattach, D., & Kaufmann, O. (2008). Modelling groundwater flow and advective contaminant transport in the Bou-Areg unconfined aquifer (NE Morocco). Journal of Hydro-environment Research, 2(3), 192-209. https://doi.org/10.1016/j.jher.2008.08.003
Eltarabily, M. G. A., & Negm, A. M. (2019). Groundwater management for sustainable development east of the nile delta aquifer. Groundwater in the Nile Delta, 687-708. https://doi.org/10.1007/698_2017_102
Faramarzi, M., Abbaspour, K. C., Schulin, R., & Yang, H. (2009). Modelling blue and green water resources availability in Iran. Hydrological Processes: An International Journal, 23(3), 486-501. https://doi.org/10.1002/hyp.7160
Farokhnia, A., Morid, S., Abbaspour, K., & Delavar, M. (2018). Development of SWAT-LU model for simulation of Lake Urmia water level decreaseand assessment of the proposed actions for its restoration; Part 1: Development, calibration and validation of SWAT-LU model. Iranian Journal of Irrigation & Drainage, 12(3), 647-665. https://idj.iaid.ir/article_73673.html (In Persian)
Farokhnia, A., Morid, S., Delavar, M., & Abbaspour, K. (2018). Development of SWAT-LU Model for Simulation of Urmia Lake Water Level Decrease and Assessment of the Proposed Actions for its Restoration; (Role of Anthropogenic and Climatic Factors on Hydrological Change of the Basin and Lake). Iranian Journal of Irrigation & Drainage, 12(5), 1041-1058. https://idj.iaid.ir/article_81775.html (In Persian)
Farokhnia, A., Morid, S., Delavar, M., & Abbaspour, K. (2019). Development of SWAT-LU Model for Simulation of Urmia Lake Water Level Decrease and Assessment of the Proposed Actions for its Restoration; Part 3: Water Accounting Analysis and Assessment of the Proposed Actions for Restoration of Urmia Lake. Iranian Journal of Irrigation & Drainage, 12(6), 1362-1380. https://idj.iaid.ir/article_85904.html (In Persian)
Ficklin, D. L., Luo, Y., & Zhang, M. (2013). Watershed modelling of hydrology and water quality in the Sacramento River watershed, California. Hydrological processes, 27(2), 236-250. https://doi.org/10.1002/hyp.9222
Galbiati, L., Bouraoui, F., Elorza, F. J., & Bidoglio, G. (2006). Modeling diffuse pollution loading into a Mediterranean lagoon: development and application of an integrated surface–subsurface model tool. Ecological Modelling, 193(1-2), 4-18. https://doi.org/10.1016/j.ecolmodel.2005.07.036
Gao, F., Feng, G., Han, M., Dash, P., Jenkins, J., & Liu, C. (2019). Assessment of surface water resources in the big sunflower river watershed using coupled SWAT–MODFLOW model. Water, 11(3), 528. https://doi.org/10.3390/w11030528
Ghobadi Alamdari, S., Asghari Moghaddam, A., & Shahsavari A. (2019). The Feasibility of the Conjunctive Use of Surface and Groundwater Resources in Dehloran Plain by Using the MODFLOW Model. Journal of Water and Soil Science, 23 (4), 45-57. http://dx.doi.org/10.47176/jwss.23.4.33561 (In Persian)
Ghodousi, M., Delavar, M., & Morid, S. (2014). Impact of Land Use Changes on Hydrology of Ajichai Basin and its Input to Urmia Lak. Iranian Journal of Soil and Water Research, 45(2), 123-133. https://doi.org/ 10.22059/ijswr.2014.51614 (In Persian)
Gholami, A., Shahedi, K., Habibnejad Rooshan, M., Vafakhah, M., & Soleimani, K. (2017). Assesment about Efficiency of SWAT Semi-Distribution Model for Simulation of Streamflow (Case Study in Talar Watershed, Mazandaran Province). Iranian Journal of Soil and Water Research, 48(3), 463-476. https://doi.org/ 10.22059/ijswr.2017.63414 (In Persian)
Gosain, A. K., Rao, S., Srinivasan, R., & Reddy, N. G. (2005). Return‐flow assessment for irrigation command in the Palleru River basin using SWAT model. Hydrological Processes: An International Journal, 19(3), 673-682. https://doi.org/10.1002/hyp.5622
Guzman, J. A., Moriasi, D. N., Gowda, P. H., Steiner, J. L., Starks, P. J., Arnold, J. G., & Srinivasan, R. (2015). A model integration framework for linking SWAT and MODFLOW. Environmental Modelling & Software, 73, 103-116. https://doi.org/10.1016/j.envsoft.2015.08.011
HajiGhasemi, S., Zakeri Niri, M., & Najafi Jilani, A. (2021). Investigating of Climate Change Effects on the Surface Runoff with SWAT Model (Case study: Mazlaghan River). Iranian Journal of Irrigation & Drainage, 15(1), 121-137. https://dorl.net/dor/20.1001.1.20087942.1400.15.1.11.1(In Persian)
Heydari, J., Chitsazan, M., & Mirzaei, S.Y. (2019). Modeling the Hydrogeological Relationship of Sahneh-Bistoon Plain Aquifer with Gamasiab River and Aquifer Management. Hydrogeology, 4(1), 140-152. https://doi.org/10.22034/hydro.2019.8447 (In Persian)
Hosseini, S. H., & Khaleghi, M. R. (2020). Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: The Zoshk–Abardeh watershed). Modeling Earth Systems and Environment, 6(4), 2003-2013. https://doi.org/10.1007/s40808-020-00846-2
Irvine, D. J., Brunner, P., Franssen, H. J. H., & Simmons, C. T. (2012). Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. Journal of Hydrology, 424, 16-23. https://doi.org/10.1016/j.jhydrol.2011.11.051
Izady, A., Davary, K., Alizadeh, A., Ghahraman, B., Sadeghi, M., & Moghaddamnia, A. (2012). Application of" panel-data" modeling to predict groundwater levels in the Neishaboor Plain, Iran. Hydrogeology Journal, 20(3), 435. https://doi.org/10.1007/s10040-011-0814-2
Janjić, J., & Tadić, L. (2023). Fields of application of SWAT hydrological model—a review. Earth, 4(2), 331-344. https://doi.org/10.3390/earth4020018
Javadi, S., Kardan Moghaddam, H., & Neshat, A. (2018). Evaluation and Simulation of Groundwater Flow in Aquifers Enclosed with Desert Saline Areas (Case Study: Isfahan Province-Ardestan Aquifer). Water Harvesting Research, 3(1&2), 15-27. https://doi.org/10.22077/jwhr.2019.1052
Jayakrishnan, R. S. R. S., Srinivasan, R., Santhi, C., & Arnold, J. G. (2005). Advances in the application of the SWAT model for water resources management. Hydrological Processes: An International Journal, 19(3), 749-762. https://doi.org/10.1002/hyp.5624
Jódar, J., Urrutia, J., Herrera, C., Custodio, E., Martos-Rosillo, S., & Lambán, L. J. (2024). The catastrophic effects of groundwater intensive exploitation and Megadrought on aquifers in Central Chile: Global change impact projections in water resources based on groundwater balance modeling. Science of the Total Environment, 914, 169651. https://doi.org/10.1016/j.scitotenv.2023.169651
Jolejole, M. E., Kim, B. J., Jeon, D. J., Cayetano, M., & Kim, J. H. (2018). Scenario study of the effect of different land use to a sub-basin in Yeongsan River basin using SWAT model. Desalination and Water Treatment, 120, 198-204. https://doi.org/10.5004/dwt.2018.22884
Jonubi, R., Rezaverdinejad, V., Behmanesh, J., & Abbaspour, K. (2018). Investigation of quantitative changes in the groundwater table of Miandoab plain affected by surface and groundwater resources management using the MODFLOW-NWT mathematical model, Iranian Journal of Soil and Water Research, 49(2), 467-481. https://doi.org/10.22059/ijswr.2017.239340.667731 (In Persian)
Kardan Moghaddam, H., Banihabib, M. E., & Javadi, S. (2018). Quantitative sustainability analysis of aquifer system (case study: South Khorasan-Birjand aquifer). Water and Soil, 31(6), 1587-1601. https://doi.org/10.22067/jsw.v31i6.66959
Ketabchi, H., Mahmoodzadeh, D., & Farhoudi Hafdaran, R. (2017). Estimation of wetland-aquifer exchanges (Case Study: Kaniborazan wetland). Iranian journal of Ecohydrology, 4(3), 699-709. https://doi.org/ 10.22059/ije.2017.62503 (In Persian)
Khaledi Alamdari, M., Majnooni Heris, A., & Fakheri Fard, A. (2022). Estimation of Hydraulic conductivity and Specific storage of Shabestar Plain Aquifer Using Numerical model. Hydrogeology, 7(1), 42-52. https://hydro.tabrizu.ac.ir/article_13724.html (In Persian)
Khalilian, S., Sarai Tabrizi, M., Babazadeh, H., & Saremi, A. (2021). Assessing the Impact of Climate Change on the Inflow on Zayandehrood Dam. Journal of Water and Soil Science, 24 (4), 255-271. http://dx.doi.org/10.47176/jwss.24.4.7492 (In Persian)
Kim, N. W., Chung, I. M., Won, Y. S., & Arnold, J. G. (2008). Development and application of the integrated SWAT–MODFLOW model. Journal of hydrology, 356(1-2), 1-16. https://doi.org/10.1016/j.jhydrol.2008.02.024
King, K. W., Fausey, N. R., & Williams, M. R. (2014). Effect of subsurface drainage on streamflow in an agricultural headwater watershed. Journal of hydrology, 519, 438-445. https://doi.org/10.1016/j.jhydrol.2014.07.035
Laïssaoui, M., Mesbah, M., Madani, K., & Kiniouar, H. (2018). Quantitative groundwater modelling for a sustainable water resource exploitation in a Mediterranean alluvial aquifer. In AIP Conference Proceedings , 1968(1), AIP Publishing, Washington, USA. https://doi.org/10.1063/1.5039184
Langevin, C. D., Hughes, J. D., Provost, A. M., Russcher, M. J., & Panday, S. (2024). MODFLOW as a Configurable Multi‐Model Hydrologic Simulator. Groundwater, 62(1), 111-123. https://doi.org/10.1111/gwat.13351
Leake, S. A., & Barlow, P. M. (2013). Understanding and managing the effects of groundwater pumping on streamflow (No. 2013-3001). US Geological Survey. https://doi.org/10.3133/fs20133001
Li, M., Li, Q., Cai, T., Li, P., & Zou, Z. (2012). Modeling the effects of land-use change on runoff generation in the upper Huaihe River basin, China. In 2012 International Symposium on Geomatics for Integrated Water Resource Management, 1-4. IEEE. https://doi.org/10.1109/giwrm.2012.6349642
Lin, H. T., Tan, Y. C., Chen, C. H., Lin, W. S., & Liu, C. W. (2012). Multivariate approaches optimize locations of groundwater pumping facilities for different hydrogeological scales. Hydrological Processes, 26(19), 2985-2996. https://doi.org/10.1002/hyp.8307
Menking, K. M., Syed, K. H., Anderson, R. Y., Shafike, N. G., & Arnold, J. G. (2003). Model estimates of runoff in the closed, semiarid Estancia basin, central New Mexico, USA. Hydrological sciences journal, 48(6), 953-970. https://doi.org/10.1623/hysj.48.6.953.51424
Mo, G., Zhang, Y., Huang, Y., Mo, C., & Yang, Q. (2020). Evaluation and hydrological impact of land-use changes in the Longtan basin. Journal of Earth System Science, 129, 1-11. https://doi.org/10.1007/s12040-020-01458-1
Molina-Navarro, E., Bailey, R. T., Andersen, H. E., Thodsen, H., Nielsen, A., Park, S., ... & Trolle, D. (2019). Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW. Hydrological Sciences Journal, 64(4), 434-454. https://doi.org/10.1080/02626667.2019.1590583
Mosase, E., Ahiablame, L., Park, S., & Bailey, R. (2019). Modelling potential groundwater recharge in the Limpopo River Basin with SWAT-MODFLOW. Groundwater for sustainable development, 9, 100260. https://doi.org/10.1016/j.gsd.2019.100260
Movahediyan, A., & Chitsazan, M. (2016). Analysis of interactions of groundwater and Karun River in Gotvand-Aghili plain using MODFLOW model. Watershed Management Research, 29(2), 9-18. https://doi.org/10.22092/wmej.2016.113417 (In Persian)
Mundetia, N., Sharma, D., & Sharma, A. (2024). Groundwater sustainability assessment under climate change scenarios using integrated modelling approach and multi-criteria decision method. Ecological Modelling, 487, 110544. https://doi.org/10.1016/j.ecolmodel.2023.110544
Nair, S. S., King, K. W., Witter, J. D., Sohngen, B. L., & Fausey, N. R. (2011). Importance of crop yield in calibrating watershed water quality simulation tools 1. JAWRA Journal of the American Water Resources Association, 47(6), 1285-1297. https://doi.org/10.1111/j.1752-1688.2011.00570.x
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute. https://doi.org/10.13031/2013.23634
Nguyen, V. T., & Dietrich, J. (2018). Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer. Hydrological processes, 32(7), 939-953. https://doi.org/10.1002/hyp.11466
Nikkhoo Amiri, S., khoshravesh, M., & Norooz Valashedi, R. (2019). Simulation of Outflow Time Series at Shahid Rajaee Dam using SWAT model. Irrigation and Water Engineering, 10(1), 66-80. https://doi.org/10.22125/iwe.2019.95875 (In Persian)
Niswonger, R. G., Panday, S., & Ibaraki, M. (2011). MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geological Survey Techniques and Methods, 6(A37), 44. https://doi.org/10.3133/tm6a37
Nohegar, A., Malekian, A., Hosseini, M., Holisaz, A., & Taghvaye Salimi, E. (2016). Comparison SUFI-2 and GLUE algorithms on runoff simulation in the forest catchments, a case study in the Shafaroud Catchment. Watershed Engineering and Management, 8(4), 389-399. https://doi.org/10.22092/ijwmse.2016.107185 (In Persian)
Omar, P. J., Dwivedi, S. B., & Dikshit, P. K. S. (2020). Sustainable development and management of groundwater in Varanasi, India. In Advances in Water Resources Engineering and Management: Select Proceedings of TRACE 2018, 201-209. https://doi.org/10.1007/978-981-13-8181-2_15
Osmani, H., Motamedvaziri, B., & Moeni, A. (2013). Simulation of discharge, calibration and validation of SWAT model, case study: Tehran Latyan dam upstream. Watershed Engineering and Management, 5(2), 134-143. https://doi.org/ 10.22092/ijwmse.2013.101809 (In Persian)
Park, S., & Bailey, R. T. (2017). SWAT‐MODFLOW tutorial: Documentation for preparing model simulations. Department of Civil and Environmental Engineering, Colorado State University: Fort Collins, CO, USA. https://doi.org/10.21926/obm.icm.2104043
ParsaSadr, H., Mohammadzadeh, H., & Nassery, H. R. (2016). Numerical simulating of Sabzevar Roudab aquifer and checking of influences of constructing Sabzevar Roudab dam on it. Journal of Water and Soil Conservation, 23(1), 119-135. https://doi.org/ 10.22069/jwfst.2016.3022 (In Persian)
Parsinejad, M., Raja, O., & Chehrenegar, B. (2022). Practical analysis of remote sensing estimations of water use for major crops throughout the Urmia Lake basin. Agricultural water management, 260, 107232. https://doi.org/10.1016/j.agwat.2021.107232
Patil, N. S., & Nataraja, M. (2020). Effect of land use land cover changes on runoff using hydrological model: a case study in Hiranyakeshi watershed. Modeling Earth Systems and Environment, 6, 2345-2357. https://doi.org/10.1007/s40808-020-00808-8
Paul, M. J. (2006). Impact of land-use patterns on distributed groundwater recharge and discharge: A case study of western Jilin, China. Chinese Geographical Science, 16, 229-235. https://doi.org/10.1007/s11769-006-0229-5
Putthividhya, A. and Laonamsai, J. 2011. SWAT and MODFLOW Modeling of Spatio-Temporal Runoff and Groundwater Recharge Distribution. In World Environmental and Water Resources Congress 2017 (pp. 51-65). https://doi.org/10.1061/9780784480618.006
Raheem, A., Ahmad, I., Arshad, A., Liu, J., Rehman, Z. U., Shafeeque, M., ... & Iqbal, U. (2023). Numerical Modeling of Groundwater Dynamics and Management Strategies for the Sustainable Groundwater Development in Water-Scarce Agricultural Region of Punjab, Pakistan. Water, 16(1), 34. https://doi.org/10.3390/w16010034
Raja, O., Parsinejad, M., & Tajrishi, M. (2022). Simulation of Groundwater Balance Using Integrated Surface and Groundwater SWAT-MODFLOW-NWT Model (Case Study: Mahabad Plain). Water and Soil, 36(1), 31-52. https://doi.org/ 10.22067/jsw.2022.74890.1138 (In Persian)
Raja, O., Parsinejad, M., & Tajrishy, M. (2022). Multipurpose Calibration of SWAT Model in Estimating Runoff, Evapotranspiration, and Crop Yield (A Case Study: Mahabad Plain). Iran-Water Resources Research, 17(4), 11-34. https://dorl.net/dor/20.1001.1.17352347.1400.17.4.1.8 (In Persian)
Raja, O., Parsinejad, M., & Tajrishy, M. (2023). Estimation and evaluation of water balance components by calibrated SWAT Model, case study: Mahabad Plain. Watershed Engineering and Management, 15(1), 109-129. https://doi.org/ 10.22092/ijwmse.2022.357631.1957 (In Persian)
Raja, O., Parsinejad, M., & Tajrishy, M. (2023). Evaluation of Interaction between Aquifer and river Using Integrated SWAT-MODFLOW-NWT Model (Case study: Mahabad plain). Irrigation Sciences and Engineering, 45(4), 49-72. https://doi.org/10.22055/jise.2022.40163.2018 (In Persian)
Rajaeian, S., Ketabchi, H., & Ebadi, T. (2024). Investigation on quantitative and qualitative changes of groundwater resources using MODFLOW and MT3DMS: a case study of Hashtgerd aquifer, Iran. Environment, Development and Sustainability, 26(2), 4679-4704. https://doi.org/10.1007/s10668-022-02904-4
Rayne, T. W., Bradbury, K. R., & Muldoon, M. A. (2001). Delineation of capture zones for municipal wells in fractured dolomite, Sturgeon Bay, Wisconsin, USA. Hydrogeology Journal, 9, 432-450. https://doi.org/10.1007/s100400100154
Rezaei Moghaddam, M.H., Hejazi, M.A., & Behbody, A. (2019). Estimation of Runoff Catchment in East Azerbaijan Province: Comparative Application of Calibration Methods and Uncertainty Analysis of SWAT Model. Journal of Geography and Environmental Hazards, 8(3), 59-75. https://doi.org/10.22067/geo.v8i3.81998 (In Persian)
Rezaei Moghaddam, M.H., Rahimpour, T., & Nakhostinrouhi, M. (2016). Potential Detection of the Groundwater Resources Using Analytic Network Process in Geographic Information System (Case Study: Basins Leading to Tabriz Plain). Iranian journal of Ecohydrology, 3(3), 379-389. https://doi.org/10.22059/ije.2016.60026 (In Persian)
Ridwansyah, I., Rustini, H. A., Yulianti, M., & Harsono, E. (2020). Water balance of Maninjau watershed with SWAT hydrological model. In IOP Conference Series: Earth and Environmental Science , 535(1), 012035. https://doi.org/10.1088/1755-1315/535/1/012035
Risal, A., Parajuli, P. B., Dash, P., Ouyang, Y., & Linhoss, A. (2020). Sensitivity of hydrology and water quality to variation in land use and land cover data. Agricultural Water Management, 241, 106366. https://doi.org/10.1016/j.agwat.2020.106366
Rodríguez, L. B., Cello, P. A. and Vionnet, C. A. 2006. Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeology Journal, 14(4), 591-602. https://doi.org/10.1007/s10040-005-0472-3
Rostamian, R., Jaleh, A., Afyuni, M., Mousavi, S. F., Heidarpour, M., Jalalian, A., & Abbaspour, K. C. (2008). Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological sciences journal, 53(5), 977-988. https://doi.org/10.1623/hysj.53.5.977
Saadatpour, A., Alizadeh, A., Ziaei, A.N., & izady, A. (2019). Integrated Surface and Groundwater Flow Modeling in Neishaboor Watershed with SWAT-MODFLOW. Water and Soil, 33(4), 521-536. https://doi.org/10.22067/jsw.v0i0.74658 (In Persian)
Saberimehr, S., Asghari moghaddam, A., & Nadiri, A. (2017). Modeling groundwater flow and salinity intrusion at Shabestar plain aquifer using GMS software model. Quaternary Journal of Iran, 3(1), 41-50. https://doi.org/10.22034/irqua.2017.701896 (In Persian)
Salmani, H., Javadi, S., Eini, M. R., & Golmohammadi, G. (2023). Compilation simulation of surface water and groundwater resources using the SWAT-MODFLOW model for a karstic basin in Iran. Hydrogeology Journal, 31(3), 571-587. https://doi.org/10.1007/s10040-023-02620-x
Sarvari, S., Ziaei, A.N., & Joodavi, A. (2019). Investigation of River‐aquifer Interactions in Bojnourd Plain Using Reach Measurements and Numerical Modeling. Water and Soil, 33(5), 671-683. https://doi.org/10.22067/jsw.v33i5.72735 (In Persian)
Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes: An International Journal, 20(15), 3335-3370. https://doi.org/10.1002/hyp.6335
Shahoei, S. V., Porhemmat, J., Sedghi, H., Hosseini, M., & Saremi, A. (2018). Monthly runoff simulation through SWAT hydrological model and evaluation of model in calibration and validation periods, case study: Ravansar Sanjabi Basin in Kermanshah Province, Iran. Watershed Engineering and Management, 10(3), 464-477. https://doi.org/10.22092/ijwmse.2017.109516.1273 (In Persian)
Shakoor, A., Arshad, M., Ahmad, R., Khan, Z. M., Qamar, U., Farid, H. U., ... & Ahmad, F. (2018). Development of Groundwater Flow Model (MODFLOW) to Simulate the Escalating Groundwater Pumping in the Punjab, Pakistan. Pakistan Journal of Agricultural Sciences, 55(3). https://doi.org/10.21162/pakjas/18.4909
Sheikhipour, B., Javadi, S., & Banihabib, M. E. (2018). Assessing the Effectiveness of Aquifer Regeneration Scenarios by Sustainability Index and Water Exploitation Indicators of Water Resources, Case Study: Shahrekord Aquifer. Water and Soil, 32(2), 267-281. https://doi.org/10.22067/jsw.v32i1.68794 (In Persian)
Sibanda, T., Nonner, J. C., & Uhlenbrook, S. (2009). Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe. Hydrogeology journal, 17(6), 1427. https://doi.org/10.1007/s10040-009-0445-z
Sisay, B. M., Nedaw, D., Birhanu, B., & Gigar, A. G. (2023). Application of SWAT and MODFLOW models for characterization of surface–groundwater interaction in the Modjo River catchment, central Ethiopia. Environmental Earth Sciences, 82(13), 341. https://doi.org/10.1007/s12665-023-10988-y
Soltani, F., Javadi, S., Roozbahani, A., Massah Bavani, A. R., & Lotfi, S. (2022). Simulation of surface water-groundwater interaction using MODFLOW-OWHM (case study: Shazand plain). Iranian journal of Ecohydrology, 9(1), 199-210. https://doi.org/10.22059/ije.2022.336586.1595 (In Persian)
Sophocleous, M. (2005). Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeology Journal, 13, 351-365. https://doi.org/10.1007/s10040-004-0385-6
Sophocleous, M., & Perkins, S. P. (2000). Methodology and application of combined watershed and ground-water models in Kansas. Journal of hydrology, 236(3-4), 185-201. https://doi.org/10.1016/s0022-1694 (00)00293-6
Spruill, C. A., Workman, S. R., & Taraba, J. L. (2000). Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Transactions of the ASAE, 43(6), 1431-1439. https://doi.org/10.13031/2013.3041
Sun, H., & Cornish, P. S. (2005). Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT. Hydrological Processes: An International Journal, 19(3), 795-807. https://doi.org/10.1002/hyp.5617
Taherian, P., Ansari, H., Davari, K., Beheshti, A., & Ziai, A. N. (2021). Modeling the groundwater quality (salinity) variations in Neyshabour plain using MODFLOW and MT3DMS. Iranian Journal of Irrigation and Drainage, 15(1), 27-37. https://dorl.net/dor/20.1001.1.20087942.1400.15.1.3.3 (In Persian)
Taherian, P., Ansari, H., Davari, K., beheshti, A., & Ziai, A. N. (2021). Modeling the groundwater quality (salinity) variations in Neyshabour plain using MODFLOW and MT3DMS. Iranian Journal of Irrigation & Drainage, 15(1), 27-37. https://dorl.net/dor/20.1001.1.20087942.1400.15.1.3.3 (In Persian)
Taie Semiromi, M., & Koch, M. (2019). Analysis of spatio-temporal variability of surface–groundwater interactions in the Gharehsoo river basin, Iran, using a coupled SWAT-MODFLOW model. Environmental Earth Sciences, 78(6), 201. https://doi.org/10.1007/s12665-019-8206-3
Trasviña-Carrillo, J. A., Wurl, J., & Imaz-Lamadrid, M. A. (2019). Groundwater flow model and statistical comparisons used in sustainability of aquifers in arid regions. Resources, 8(3), 134. https://doi.org/10.3390/resources8030134
Triki, C., Zekri, S., Al‐Maktoumi, A., & Bazargan‐Lari, M. R. (2020). Optimal location of wells for storage and recovery of surplus desalinated water in coastal aquifers. Groundwater, 58(5), 831-841. https://doi.org/10.1111/gwat.12951
Upadhyay, P., Linhoss, A., Kelble, C., Ashby, S., Murphy, N., & Parajuli, P. B. (2022). Applications of the SWAT model for coastal watersheds: review and recommendations. Journal of the ASABE, 65(2), 453-469. https://doi.org/10.13031/ja.14848
Valivand, F., & Katibeh, H. (2019). Assessment of The Long-Term Quantitative Effects of Management Conditions and Current Abstraction on Varamin Plain Aquifer. Journal of Water and Soil Conservation, 26(2), 251-261. https://doi.org/10.22069/jwsc.2019.15448.3067 (In Persian)
Van Liew, M. W., Arnold, J. G., & Garbrecht, J. D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of the ASAE, 46(6), 1539-1551. https://doi.org/10.13031/2013.15643
Wang, W., Chen, Y., Wang, W., Zhu, C., Chen, Y., Liu, X., & Zhang, T. (2023). Water quality and interaction between groundwater and surface water impacted by agricultural activities in an oasis-desert region. Journal of Hydrology, 617, 128937. https://doi.org/10.1016/j.jhydrol.2022.128937
Wang, X., Sun, Y., Xu, Z., Zheng, J., & Zhang, C. (2020). Feasibility prediction analysis of groundwater reservoir construction based on GMS and Monte Carlo analyses: a case study from the Dadougou Coal Mine, Shanxi Province, China. Arabian Journal of Geosciences, 13, 1-11. https://doi.org/10.1007/s12517-019-4978-8
Ware, H. H., Mengistu, T. D., Yifru, B. A., Chang, S. W., & Chung, I. M. (2023). Assessment of Spatiotemporal Groundwater Recharge Distribution Using SWAT-MODFLOW Model and Transient Water Table Fluctuation Method. Water, 15(11), 2112. https://doi.org/10.3390/w15112112
Wei, X., & Bailey, R. T. (2019). Assessment of system responses in intensively irrigated stream–aquifer systems using SWAT-MODFLOW. Water, 11(8), 1576. https://doi.org/10.3390/w11081576
Wei, X., Bailey, R. T., Records, R. M., Wible, T. C., & Arabi, M. (2019). Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model. Environmental Modelling & Software, 122, 104242. https://doi.org/10.1016/j.envsoft.2018.06.012
Wheater, H.S. )2010(. Hydrological processes, groundwater recharge and surface-water/groundwater interactions in arid and semi-arid areas. Groundwater Modeling in Arid and Semi-Arid Areas, 1st ed. Howard S. Wheater, Simon A. Mathias and Xin Li. Published by Cambridge University Press, 5-37. https://doi.org/10.1017/cbo9780511760280.003
Xu, K., & Peng, H. Q. (2013). Estimating runoff and environment protection in Tao River Basin based on SWAT Model. Applied Mechanics and Materials, 340, 942-946. https://doi.org/10.4028/www.scientific.net/amm.340.942
Yifru, B. A., Lee, S., Bak, S., Bae, J. H., Shin, H., & Lim, K. J. (2024). Estimating exploitable groundwater for agricultural use under environmental flow constraints using an integrated SWAT-MODFLOW model. Agricultural Water Management, 303, 109024. https://doi.org/10.1016/j.agwat.2024.109024
Yousefi, A., Sarai Tabrizi, M., Porhemmat, J., & Babazadeh, H. (2022). Studying Groundwater Resources Balancing Plan under Climate Change Conditions (Case Study: Hashtgerd Study Area). Iranian Water Researches Journal, 16(2). https://doi.org/10.22034/iwrj.2022.10020.2340 (In Persian)
Zhang, L., Li, X., Han, J., Lin, J., Dai, Y., & Liu, P. (2024). Identification of surface water-groundwater nitrate governing factors in Jianghuai hilly area based on coupled SWAT-MODFLOW-RT3D modeling approach. Science of the Total Environment, 912, 168830. https://doi.org/10.1016/j.scitotenv.2023.168830