Improving the power outputs of oscillating water column wave energy converters by optimizing the geometrical parameters

Document Type : Original Article

Authors

1 Associate Professor, Faculty of New Sciences Technologies, Tehran University, Tehran, Iran.

2 M. Sc student of Renewable Energy Engineering, Faculty of New Sciences Technologies, Tehran University, Tehran, Iran.

Abstract

There are currently various methods for extracting energy and generating electricity from wave energy, one of the simplest and most practical methods is the use of water oscillating column (OWC). The water oscillating column of our study on the OWC has a chamber with a front wall that is oriented against the direction of the current. In this research, a two-dimensional numerical study on the geometric optimization of an ocean wave energy converter (WEC) to electrical energy is presented. The main factor is OWC. To do this, the geometric parameter of the OWC chamber length was optimized, while the other parameters (height to length ratio) were kept constant. In this study, a regular wave with dimensions on a laboratory scale was considered. To determine the optimal energy converter parameter based on environmental parameters (water depth, wave period and altitude), first by using PSO meta-innovation algorithm and coding in MATLAB software to create an algorithm to study and present the most optimal parameters And we did it at different depths. The results of this study indicate the very appropriate answers of the proposed PSO algorithm to determine the parameter of the optimal operating chamber of the wave oscillator energy converter in comparison with other algorithms. The performance of the designed converter in the obtained optimal state is equal to 54%, which increase in comparison with the research background is a self-confirmation of the results obtained from the determination of the optimal state by the proposed algorithm.

Keywords

Main Subjects


  1. Alamian, R., Shafaghat, R., Miri, S. J., Yazdanshenas, N., & Shakeri, M. (2014). Evaluation of technologies for harvesting wave energy in Caspian Sea. Renewable and Sustainable Energy Reviews, 32, 468–476. https://doi.org/10.1016/j.rser.2014.01.036

    Ashlin, S. J., Sannasiraj, S. A., & Sundar, V. (2018). Performance of an array of oscillating water column devices integrated with an offshore detached breakwater. Ocean Engineering, 163, 518–532.               https://doi.org/10.1016/j.oceaneng.2018.05.043

    Ashlin, S. J., Sundar, V., & Sannasiraj, S. A. (2016). Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, 96, 341–353.              http://dx.doi.org/10.1016/j.renene.2016.04.091

    Bai, Q. (2010). Analysis of particle swarm optimization algorithm. Computer and Information Science, 3(1), 180. https://doi.org/10.5539/cis.v3n1p180

    Bouali, B., & Larbi, S. (2013). Contribution to the geometry optimization of an oscillating water column wave energy converter. Energy Procedia, 36, 565–573. https://doi.org/10.1016/j.egypro.2013.07.065

    Çelik, A., & Altunkaynak, A. (2019). Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter. Energy, 188, 116071.                     https://doi.org/10.1016/j.energy.2019.116071

    Dean, R. G. (1984). Water wave mechanics for engineers and scientists. Adv.Series on Ocean Engineering, 2, 353. https://doi.org/10.1142/1232

    Dizadji, N., & Sajadian, S. E. (2011). Modeling and optimization of the chamber of OWC. Energy, 36(5), 2360–2366. https://doi.org/10.1016/j.energy.2011.01.010

    Fairhurst, J., & Van Niekerk, J. (2016). Modelling, Simulation and Testing of a Submerged Oscillating Water Column. International Journal of Marine Energy. 16. http://dx.doi.org/10.1016/j.ijome.2016.07.005

    Fourie, P. C., & Groenwold, A. A. (2002). The particle swarm optimization algorithm in size and shape optimization. Structural and Multidisciplinary Optimization, 23(4), 259–267.                https://doi.org/10.1007/s00158-002-0188-0

    Hadadpour, A., Jabbari, E., & Kamranzad, B.(2014). Wave energy and hot spots in Anzali port. Energy, 74, 529–536. https://doi.org/10.1016/j.energy.2014.07.018

    Howe, D., & Nader, J.-R. (2017). OWC WEC integrated within a breakwater versus isolated: Experimental and numerical theoretical study. International Journal of Marine Energy, 20, 165–182.             https://doi.org/10.1016/j.oceaneng.2018.10.036

    John Ashlin, S., Sannasiraj, S. A., Sundar, V., Kamath, A., & Bihs, H. (2019). Effects of power take-off damping and model scaling on the hydrodynamic performance of OWC device.(ICOE2018), 807–821. http://dx.doi.org/10.1007/978-981-13-3134-3_60

    Kamath, A., Bihs, H., & Arntsen, Ø. A. (2015). Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean Engineering, 102, 40–50.                 https://doi.org/10.1016/j.oceaneng.2015.04.043

    Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95-International Conference on Neural Networks, 4, 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Lia, Q., Mia, J., Lia, X., Chena, S., , & Zuoa, L. (2014). A self-floating oscillating surge wave energy converter. Energy, 230,120668. https://doi.org/10.1016/j.energy.2021.120668

    McCormick, M. E. (2013). Ocean wave energy conversion. Courier Corporation. published by wiley,c. https://books.google.sc/books?id=wkDDAgAAQBAJ&printsec=copyright#v=onepage&q&f=false

    Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. https://doi.org/10.1115/1.2426992

    Naeeni, S., Amini, E. (2020). Numerical Optimization of Positioning and Performance of Oscillating Surge Wave Energy Converter, Case study: Nowshahr, Anzali and Amirabad Ports. Journal of Maritime Transport Industry, 6(1), 25-37. https://doi.org/10.30474/JMTI.2020.110562 [in persian]

    Pant, M., Thangaraj, R., & Abraham, A. (2009). Particle swarm optimization: performance tuning and empirical analysis. In Foundations of Computational Intelligence, 3, 101–128.                    https://doi.org/10.1007/978-3-642-01085-9_5

    Patel, S. K., Ram, K., & Ahmed, M. R. (2013). Effect of turbine section orientation on the performance characteristics of an oscillating water column device. Experimental Thermal and Fluid Science, 44, 642–648. http://dx.doi.org/10.1016/j.expthermflusci.2012.09.004

    Raj, D. D., Sundar, V., & Sannasiraj, S. A. (2019). Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls. Renewable Energy, 132, 142–156.               https://doi.org/10.1016/j.renene.2018.07.089

    Ram, K., Faizal, M., Rafiuddin Ahmed, M., & Lee, Y.H. (2010). Experimental studies on the flow characteristics in an oscillating water column device. Journal of Mechanical Science and Technology, 24(10), 2043–2050. http://dx.doi.org/10.1007/s12206-010-0621-z

    Rezanejad, K., Bhattacharjee, J., & Soares, C. G. (2013). Stepped sea bottom effects on the efficiency of nearshore oscillating water column device. Ocean Engineering, 70, 25–38.                https://doi.org/10.1016/j.oceaneng.2013.05.029

    Rezanejad, K., Souto-Iglesias, A., & Soares, C. G. (2019). Experimental investigation on the hydrodynamic performance of an L-shaped duct OWC wave energy converter. Ocean Engineering, 173, 388–398. https://doi.org/10.1016/j.oceaneng.2019.01.009

    1. Mohsen, P., Pourfayaz, F., Shirmohamadi, R., Moosavi, S., & Khalilpoor, N. (2021). Potential, Current Status, and Applications of Renewable Energy in Energy Sector of Iran: A Review. Renewable Energy Research and Applications, 2(1), 25-49. https://doi.org/ 10.22044/rera.2020.8841.1008

    Shahsavarizadeh, A., Zahiri, J., & Jafari, A. (2019). Effect of the Back Wall Draft on the Performance of Oscillating Water Column for Wave Energy Extraction. Iranian Journal of Soil and Water Research, 50(8), 1937–1949. https://dx.doi.org/10.22059/ijswr.2019.273724.668094 [In Persian]

    Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. (Cat. No. 98TH8360), 69–73.              https://doi.org/10.1109/ICEC.1998.699146

    Simonetti, I., Cappietti, L., & Oumeraci, H. (2018). An empirical model as a supporting tool to optimize the main design parameters of a stationary OWC wave energy converter. Applied Energy, 231, 1205–1215. http://dx.doi.org/10.1016/j.apenergy.2018.09.100

    Suroso, A. (2005). Hydraulic model test of wave energy conversion. Jurnal Mekanikal, 19, 84–94. http://eprints.utm.my/id/eprint/8252/1/AriefSuroso2005_Hydraulic_model_test_of_wave_energy.pdf

    Teixeira, P. R. F., Davyt, D. P., Didier, E., & Ramalhais, R. (2013). Numerical simulation of an oscillating water column device using a code based on Navier--Stokes equations. Energy, 61, 513–530. https://doi.org/ 10.1016/j.energy.2013.08.062

    Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317–325. https://doi.org/10.1016/S0020-0190(02)00447-7

    Xu, C., & Huang, Z. (2019). 3D CFD simulation of a circular OWC with a nonlinear power-takeoff: Model validation and a discussion on resonant sloshing inside the pneumatic chamber. Ocean Engineering, 176, 184–198. https://doi.org/10.1016/j.oceaneng.2019.02.010