Allen, R., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No, 56. https://www.researchgate.net/publication/235704197_Crop_evapotranspiration-Guidelines_for_computing_crop_water_requirements-FAO_Irrigation_and_drainage_paper_56
Amiri, E., Bahrani, A., Khorsand, A., & Haghjoo, M. (2016). Evaluating AquaCrop Model Performance to Predict Grain Yield and Wheat Biomass, Under Water Stress. Water and Soil Science, 25(4/2), 217-229. https://water-soil.tabrizu.ac.ir/article_4639.html [Persian]
Araya, A., Habtu, S., Hadgu, K. M., Kebede, A., & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water-deficient and irrigated barley (Hordeumvulgare). Agricultural Water Management. 97(11), 1838–1846. https://econpapers.repec.org/scripts/redir.pf?u=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0378-3774%2810%2900226-X;h=repec:eee:agiwat:v:97:y:2010:i:11:p:1838-1846
Araya, A., Keesstra, S. D., & Stroosnijder, L. (2010). Simulating yield response to water of Teff (Eragrostistef) with FAO’s AquaCrop model. Field Crops Research. 116, 196–204. http://dx.doi.org/10.1016/j.fcr.2009.12.010
Ataei, P., Rahimikhoob, A., & Arab, M. (2019). Performance Evaluation of the AquaCrop Semi-Quantitative Method for Prediction of Radish Growth under Different Levels of Nitrogen Fertilizer. Iranian Journal of Soil and Water Research, 50(6), 1553-1567. https://dx.doi.org/10.22059/ijswr.2019.270122.668063 [Persian]
Babazadeh, H., & Sarai Tabrizi, M. (2012). Assessment of AquaCrop model under soybean deficit irrigation management conditions. Journal of Water and Soil. 26 (2), 329-339. https://dx.doi.org/10.22067/jsw.v0i0.14156 [Persian]
Doorenbos, J., & Kassam, A. H. (1979). Yield response to water. FAO Irrigation and Drainage Paper No, 33. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=552874
Duncan, k., & Nobert, J. (2015). Assessment of the impact of climate change and adaptation strategies on maize production in Uganda. Physics and chemistry of the Earth, Parts A/B/C. 93, 1-9. http://dx.doi.org/10.1016/j.pce.2015.09.005
Ebrahimi, M., Verdinejad, V., & Mjnooni - Heris, A. (2015). Dynamic Simulation through Aqua Crop of Maize Growth under Different Management Decisions of Water Application and Nitrogen Fertilizer Use. Iranian Journal of Soil and Water Research, 46(2), 207-220. https://dx.doi.org/10.22059/ijswr.2015.55926 [Persian]
Ebrahimipak, N., Egdarnejad, A., & Khodadadi Dehkordi, D. (2018). Evaluation of AquaCrop Model to Simulate Corn Yield under Water deficit and Superabsorbent application. Irrigation and Water Engineering, 8(3), 166-184. http://www.waterjournal.ir/article_74092.html [Persian]
Feng, D., Li, G., Wang, D., Wulazibieke, M., Cai, M., Kang, J., Yuan, Z., & Xu, H. (2022). Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China. Agricultural Water Management, 261,107372. ttps://doi.org/107372. 10.1016/j.agwat.2021
Ghamari, M., Andarzian, B., Bakhshandeh, A.M., Gharineh, M. H., & Fathi, GH. (2011). Simulating Effects of Drought and Nitrogen Stress On Yield, Water and Nitrogen Use Efficiency of Corn Using Ceres-Maize Simulating Model. Crop Physiology Journal, 3 (11), 21-31. http://dorl.net/dor/20.1001.1.2008403.1390.3.11.2.1 [Persian]
Hassanli, M., Afrasiab, P., Ebrahimian, H. (2015). Evaluation of AquaCrop vs SALTMED Models to Estimate Crop Yield and Soil Salinity. Iranian Journal of Soil and Water Research, 46(3), 487-498. https://dx.doi.org/10.22059/ijswr.2015.56738 [Persian]
Heidarinia, M., Boroomand Nasab, S., Naseri, A., & Albaji, M. (2017). AquaCrop model evaluation to estimate of Maize yield and soil salinity under different agriculture managements and irrigation with saline water. Iranian Journal of Soil and Water Research, 48(1), 49-61. https://dx.doi.org/10.22059/ijswr.2017.61340 [Persian]
Heng, L., Hsiao, T.C., Evett, S., Howell, T., & Steduto, P. (2009). Validating the FAO aquaCrop model for irrigated and water-deficient field maize. Agronomy Journal, 101, 488–498. http://dx.doi.org/10.2134/agronj2008.0029xs
Hengsdijk, H., Bouman, B.A.M., Nieuwenhuyse, A., & Jansen, H.G.P. (1999). Quantification of land use systems using technical coefficient generators: a case study for the Northern Atlantic zone of Costa Rica. Agricultural Systems, 61(2), 109-121. https://doi.org/10.1016/S0308-521X (99)00041-4
Hosseini, S., Khoshravesh, M., Ziatabar Ahmadi, M., & Ghadami Firouzabadi, A. (2016). Evaluation of Soybean Yield by Aquacrop Model Under Salinity and Deficit Irrigation Management. Journal of Water Research in Agriculture, 30 (3), 361-372. https://dx.doi.org/10.22092/jwra.2016.107156 [Persian]
Izadi, Z., Nasrollahi, A., & Haghighati, B. (2018). Evaluation of the AquaCrop model to simulation of the potato growth and yield under water stress. Iranian Journal of Soil and Water Research, 49(1), 171-180. https://dx.doi.org/10.22059/ijswr.2017.232438.667675 [Persian]
Kelly, T.D. & Foster, T. (2021). AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling. Agricultural Water Management, 254, 106976. https://doi.org/10.1016/j.agwat.2021.106976
Khalili, N., Davary, K., Alizadeh, A., Kafi, M., & Ansari, H. (2015). Simulation of Rainfed Wheat Yield using AquaCrop Model, Case Study: Sisab Rainfed Researches Station, Northern Khorasan. Water and Soil, 28(5), 930-939. https://dx.doi.org/10.22067/jsw.v0i0.34927 [Persian]
Liu, H.F., Genard, M., Guichard, S., & Bertin, N. (2007). Model-assisted analysis of tomato fruit growth about carbon and water fluxes. Journal of experimental botany, 58(13), 3567-3580. https://doi.org/10.1093/jxb/erm202
Mehrazar, A., Soltani, J., & Rahmati, O. (2016). Evaluation of the AquaCrop Model to Simulate Maize Yiled Response under Salinity Stress. Journal of Water and Soil, 30 (5), 1426-1439. https://dx.doi.org/10.22067/jsw.v0i0.43858 [Persian]
Mohamadi, M., Davari, K., Ghahraman, B., Ansari, H., & Haghverdi, A. (2015). Calibration and Validation of AquaCrop Model for Simulation of Spring Wheat Yield under Simultaneous Salinity and Water Stress. Journal of Water Research in Agriculture, 29 (3), 277-295. https://dx.doi.org/10.22092/jwra.2015.103054 [Persian]
Momeni, R., Behbahani, M., Nazari far, M., & Azadegan, B. (2011). Evaluation of Increasing Water Productivity Scenarios for Rain-Fed Wheat by Management Analysis of CropSyst Crop Model in Karkheh Basin. Water and Irrigation Management, 1(1), 29-40. https://journals.ut.ac.ir/article_23383.html [Persian]
Pourgholam-Amiji, M., Liaghat, A., Ghameshlou, A.N. & Khoshravesh, M., (2021). The evaluation of DRAINMOD-S and AquaCrop models for simulating the salt concentration in soil profiles in areas with saline and shallow water table. Journal of Hydrology, 598, 126259. https://doi.org/10.1016/j.jhydrol.2021.126259
Raes, D., Steduto, P., Hsiao, T.C., & Fereres, E. (2009). AquaCrop the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101, 438–447. https://doi.org/10.2134/agronj2008.0140s
Rahimikhoob, H., Sohrabi, T., & Delshad, M. (2020). Sensitivity Analysis of Basil Crop Growth Parameters in the Aquacrop Model under Different Nitrogen Fertilizer Stresses. Iranian Journal of Soil and Water Research, 51(6), 1341-1351. https://dx.doi.org/10.22059/ijswr.2020.298460.668516 [Persian]
Saeidi, R., Ramezani Etedali, H., Sotoodehnia, A., Nazari, B., & Kaviani, A. (2021). Evaluation of AquaCrop model for estimating of changes process of soil moisture, evapotranspiration and yield of maize under salinity and fertility stresses. Environmental Stresses in Crop Sciences, 14(1), 195-210. https://dx.doi.org/10.22077/escs.2020.2473.1652 [Persian]
Shabani, E., Zakerinia, M., & Hesam, M. (2019). Evaluating the Efficacy of Aquacrop Model Performance in Simulating Soybean Yield (Williams Cultivar) in Golestan Province Under Salt Stress Caused by Caspian Sea Water and Different Levels of İrrigation. Irrigation Sciences and Engineering, 42(2), 49-62. https://dx.doi.org/10.22055/jise.2017.18343.1332[Persian]
Shirazi, S.Z., Mei, X., Liu, B. & Liu, Y. (2021). Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain. Agricultural Water Management, 257, 107120. https://doi.org/10.1016/j.agwat.2021.107120
Singh, A., Saha, S., & Mondal, S. (2013). Modeling irrigated wheat production using the FAO Aquacrop model in west Bengal, India. Published online in Wiley Online Library. Journal of Irrigation and Drainage, 62, 50–56. https://doi.org/10.1002/ird.1722
Singh, A.K., Tripathy, R., & Chopra, U.K. (2008). Evaluation of CERES Wheat and crop system models for water-nitrogen interactions in wheat crop. Agricultural Water Management, 95, 776-786. https://ideas.repec.org/a/eee/agiwat/v95y2008i7p776-786.html
Tavakoli, A.R., Mahdavi Moghadam, M., & Sepaskhah, R. (2015). Evaluation of the Aquacrop model for barley production under deficit irrigation and rainfed condition in Iran. Agricultural water management, 161, 136-146. https://doi.org/10.1016/j.agwat.2015.07.020
Van Ittersum, M.K., Leffelaar, P.A., Van Keulen, H., Kropff, M.J., Bastiaans, L., & Goudriaan, J. (2003). On applications of the Wageningen crop models. European Jounal of Agronomy, 18(3-4), 201-234. http://dx.doi.org/10.1016/S1161-0301(02)00106-5
Vanuytrecht, E., & Raes, D. (2011). Assessment of the ‘CO2 fertilization effect’ on crops with the Aquacrop model. Geophysical Research Abstracts, 13, EGU2011-5917-2. https://meetingorganizer.copernicus.org
Wellens, J., Raes, D., Fereres, E., Diels, J., Coppye, C., Adiele, J.G., Ezui, K.S.G., Becerra, L.A., Selvaraj, M.G., Dercon, G., & Heng, L.K. (2022). Calibration and validation of the FAO AquaCrop water productivity model for cassava (Manihot esculenta Crantz). Agricultural Water Management, 263(C), 107491. http://dx.doi.org/10.1016/j.agwat.2022.107491
Wolka, K., Biazin, B., Martinsen, V., & Mulder, J. (2021). Soil and water conservation management on hill slopes in southwest Ethiopia. II. Modeling effects of soil bunds on surface runoff and maize yield using AquaCrop. Journal of Environmental Management, 296, 113-187. https://doi.org/10.1016/j.jenvman.2021.113187
Wu, D. (2008). Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain. European Journal of Agronomy, 24(3), 226-235. https://dx.doi.org/10.22069/ijpp.2012.601
Wu, H., Yue, Q., Guo, P., Xu, X., & Huang, X. (2022). Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules. Agricultural Water Management, 266, 107599. https://dx.doi.org/10.1016/j.agwat.2018.01.030