Sediment Rating Curve Estimation Using Robust Regression

Document Type : Original Article

Authors

1 Associate Professor, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Assistant Professor, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

3 Professor, Water Engineering Department, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Abstract

A sediment rating curve is the most known method in the hydrological approach for suspended sediment load estimation that is a power equation (or linear equation based on logarithmic data transformation) to relate suspended sediment load to the river discharge. The conventional method to determine the sediment rating curve is ordinary least square (OLS) that outliers can significantly influence. The robust estimations are statistical methods developed to overcome the limitations of OLS. In this study, two robust estimation methods, including MM and least trimmed square (LTS) methods, were investigated for sediment rating curve estimation, and their results were compared with OLS. To compare these three estimators, recorded data sets of four hydrometry stations, Baghou, Alang-Darreh, Anjirab, and Jafakandeh, located in Golestan province with 33-279 pairs of data were used. Coefficient of determination, root mean square error, and mean absolute error as numerical criteria, and graphical criterion was used to compare the results. Assessment of numerical precision criteria showed suitable efficiency for equations estimated based on robust estimator application and revealed their ability to improve OLS estimation. Evaluation of graphical criterion revealed that robust regression estimations could be similar or different to the OLS.

Keywords

Main Subjects


Achite, M., & Ouillon, S. (2007). Suspended sediment transport in a semiarid watershed, Wadi Abd, Algeria (1973–1995). Journal of Hydrology, 343(3), 187-202.               http://dx.doi.org/10.1016/j.jhydrol.2007.06.026
Alp, M., & Cigizoglu, H.K. (2007). Suspended sediment load simulation by two artificial neural network methods using hydrometeorological data. Environmental Modelling & Software, 22(1), 2-13. http://dx.doi.org/10.1016/j.envsoft.2005.09.009
Arabkhedri, M., Lai, F.S., Ibrahim, N.A., & Mohamad-Kasim, M.R. (2009). Effect of Adaptive Cluster Sampling Design on Accuracy of Sediment Rating Curve Estimation. Journal of Hydrologic Engineering, 15(2), 142-151. https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-                           5584.0000171
Bowlby, H.D., & Gibson, A.J.F. (2015). Environmental effects on survival rates: robust regression, recovery planning and endangered Atlantic salmon. Ecology and evolution, 5(16), 3450-3461. https://doi.org/10.1002/ece3.1614
Chun, J.A., Cooke, R.A., Kang, M.S., Choi, M., Timlin, D., & Park, S.W. (2010). Runoff losses of suspended sediment, nitrogen, and phosphorus from a small watershed in Korea. Journal of environmental quality, 39(3), 981-990. https://doi.org/10.2134/jeq2009.0226
Cohn, T.A., Delong, L.L., Gilroy, E.J., Hirsch, R.M., & Wells, D.K. (1989). Estimating constituent loads. Water resources research, 25(5), 937-942. https://doi.org/ 10.1029/WR025i005p00937
Duan, N. (1983). Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association,78(383), 605-610. https://doi.org/10.2307/2288126

Emamgholizadeh, S., & Demneh, R.K. (2019). A comparison of artificial intelligence models for the estimation of daily suspended sediment load: a case study on the Telar and Kasilian rivers in Iran. Water Supply, 19(1), 165-178. https://doi.org/10.2166/WS.2018.062

Ferguson, R.I. (1987). Accuracy and precision of methods for estimating river loads. Earth surface processes and landforms, 12(1), 95-104. https://www.doi.org/10.1002/ESP.3290120111
Horowitz, A.J. (2002). The use of rating (transport) curves to predict suspended sediment concentration: a matter of temporal resolution. InTurbidity and other Sediment Surrogates Workshop. April.
Hu, B., Wang, H., Yang, Z., & Sun, X. (2011). Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) basin and their implications. Quaternary International, 230(1), 34-43. http://dx.doi.org/10.1016%2Fj.quaint.2009.08.018
Huber, P.J. (1973). Robust regression: asymptotics, conjectures and Monte Carlo. The Annals of Statistics, 799-821. https://www.jstor.org/stable/2958283
Huber, P.J. (1981). Robust Statistics. New York, NY: John Wiley & Sons, Inc.       https://www.wiley.com/en-us/Robust+Statistics%2C+2nd+Edition-p-9780470129906
Iadanza, C., & Napolitano, F. (2006). Sediment transport time series in the Tiber River. Physics and Chemistry of the Earth, Parts A/B/C, 31(18), 1212-1227.                http://dx.doi.org/10.1016/j.pce.2006.05.005
Kao, S., Lee, T., & Milliman, J. D. (2005). Calculating highly fluctuated suspended sediment fluxes from mountainous rivers in Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 16(3), 653. https://doi.org/10.3319/TAO.2005.16.3.653(T)
Kisi, O. (2005). Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones. Hydrological Sciences Journal, 50(4). https://doi.org/10.1623/hysj.2005.50.4.683
Kisi, O., Haktanir, T., Ardiclioglu, M., Ozturk, O., Yalcin, E., & Uludag, S. (2009). Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Advances in Engineering Software, 40(6), 438-444. http://dx.doi.org/10.1016%2Fj.advengsoft.2008.06.004
Kisi, O., Karahan, M. E., & Şen, Z. (2006). River suspended sediment modelling using a fuzzy logic approach. Hydrological Processes, 20(20), 4351-4362. https://doi.org/10.1002/hyp.6166
Kvam, P. H., & Vidakovic, B. (2007). Nonparametric statistics with applications to science and engineering (Vol. 653). John Wiley & Sons.
Maes, J., Vliegen, J., Van de Vel, K., Janssen, S., Deutsch, F., De Ridder, K., & Mensink, C. (2009). Spatial surrogates for the disaggregation of CORINAIR emission inventories. Atmospheric Environment, 43(6), 1246-1254. http://dx.doi.org/10.1016/j.atmosenv.2008.11.040
Rodríguez-Blanco, M.L., Taboada-Castro, M.M., Palleiro, L., & Taboada-Castro, M.T. (2010). Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology, 123(1), 181-188. http:// doi.org/10.1016/j.geomorph.2010.07.015
Rousseeuw, P.J. (1984). Least median of squares regression. Journal of the American statistical association, 79(388), 871-880. http://dx.doi.org/10.1080/01621459.1984.10477105
Sadeghi, S. H. R., Mizuyama, T., Miyata, S., Gomi, T., Kosugi, K., Fukushima, T., & Onda, Y. (2008). Development, evaluation and interpretation of sediment rating curves for a Japanese small mountainous reforested watershed. Geoderma, 144(1), 198-211.                                   https://doi.org/10.1016/j.geoderma.2007.11.008
Salarijazi, M., Abdolhosseini, M., Ghorbani, K., & Eslamian, S. (2016). Evaluation of quasi-maximum likelihood and smearing estimator to improve sediment rating curve estimation. International Journal of Hydrology Science and Technology, 6(4), 359-370. https://doi.org/10.1504/IJHST.2016.079352
Schumacker, R. E., Monahan, M. P., & Mount, R. E. (2002). A comparison of OLS and robust regression    using S-PLUS. Multiple Linear Regression Viewpoints, 28(2), 10-13. https://citeseerx.ist.psu.edu › viewdoc 
Smoliński, A., Walczak, B., & Einax, J.W. (2003). Robust multivariate calibration in environmental studies. Analytical letters, 36(10), 2317-2336. http://dx.doi.org/10.1081/AL-120023722
Sokol, Z. (2003). The use of radar and gauge measurements to estimate areal precipitation for several Czech river basins. Studia Geophysica et Geodaetica, 47(3), 587-604.                https://doi.org/10.1023/A:1024715702575
Yohai, V.J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics, 642-656. https://doi.org/10.1214/aos/1176350366
Zhang, S., Lu, X.X., Higgitt, D.L., Chen, C.T.A., Han, J., & Sun, H. (2008). Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global and Planetary Change, 60(3), 365-380. http://dx.doi.org/10.1016/j.gloplacha.2007.04.003