Assessment of downscaling methods for estimating evapotranspiration by combining MODIS and Landsat 8 images

Document Type : Original Article

Authors

1 M. Sc graduated, Water Engineering Department, Faculty of Agriculture, Razi University, Kermanshah, Iran.

2 Assistant Professor, Water Engineering Department, Faculty of Agriculture, Razi University, Kermanshah, Iran.

Abstract

Evapotranspiration (ET) is one of the most important parameters in agricultural water management which has spatial and temporal variations. Remote sensing-based algorithms of ET estimation have been applied in several studies. Using MODIS satellite images ET can be estimated on a daily basis at the pixel size of 1000 meters while using Landsat 8 images can be estimated every 16 days in the pixel size of 100 meters. Various methods are available for combining satellite images with low (such as MODIS) and medium (such as Landsat 8) spatial resolution to estimate evapotranspiration on a daily basis in the lower pixel size. Downscaling is one of these methods which was evaluated in this study is one of the plains in Kermanshah province. For this purpose, the actual ET over the study area was calculated during the summer of 2014 using the SEBAL algorithm based on six satellite images of Landsat 8 and MODIS. Although there are several methods for downscaling the estimated evapotranspiration based on MODIS images, in this study two simple downscaling methods (ratio and subtraction). were used to convert the Landsat 8 image scale. Results of downscaled images of MODIS were compared with the results of Landsat 8 images graphically and statistically. Given the fact of small size and mixed land use types in the study area results of downscaling methods were not acceptable.

Keywords

Main Subjects


Allen, R.G., Morse, A., & Tasumi, M. (2003). Application of SEBAL for western US water rights regulation and planning. In Proc. ICID Int. Workshop on Remote Sensing, Montpellier, France. https://www.semanticscholar.org/paper/Application-of-SEBAL-for-Western-US-Water-Rights-Allen-Morse/b4ade7e12766a89491e9a968f96ac0f99f3a019a

Arast, M., Ranjbar, A., Abdolahi, K., & Mousavi, S. H. (2020). Investigating the spatial resolution of actual evapotranspiration maps in the ZayandehRud basin. Geographic Information, 29 (113), 129-140. http://www.sepehr.org/article_40475.html [in Persian]

Atkinson, P.M. (2013). Downscaling in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 22, 106-114. https://dx.doi.org/10.1016/j.jag.2012.04.012
Bastiaanssen, W. G. M., Vander Wal T. & Visser, T. N. M. (1996). Diagnosis of regional evaporation by remote sensing to support irrigation performance management. Irrigation and Drainage Systems, 10, 1-23. https://dx.doi.org/10.1007/BF01102762
Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of hydrology, 212, 198-212. https://dx.doi.org/10.1016/S0022-1694(98)00253-4
Farhadi Bansouleh, B., Karimi, A.R., & Hesadi, H. (2015). Evaluation of SEBAL and SEBS Algorithms in the Estimation of Maize Evapotranspiration. International Journal of Plant & Soil Science, 6(6), 350-358. https://dx.doi.org/10.9734/IJPSS/2015/15711

Ghamarnia, H., Gholamian, S.M., & Kamali, N. (2016). Estimating of Crop Coefficient and Actual Evapotranspiration of Corn Using LANDSAT8 Images (Case Study: Sarab Nilufar Plain in Kermanshah). Iran - Water Resources Research, 12 (4), 93-107. http://www.iwrr.ir/article_42242.html [in Persian]

Ghamarnia, H., & Rezvani, S.V. (2014). Calculation and Zoning of Evapotranspiration using SEBAL method In the West of Iran (Miandarband Plain). Journal of Water and Soil, 28 (1), 72-81. https://dx.doi.org/10.22067/jsw.v0i0.20634 [in Persian]  

Ha, W., Gowda, P. H., & Howell, T.A. (2013). A review of downscaling methods for remote sensing-based irrigation management: Part I. Irrigation Science, 31, 831-850. https://dx.doi.org/10.1007/s00271-012-0331-7
Hong, S. H., Hendrickx, J. M., & Borchers, B. (2011). Down-scaling of SEBAL derived evapotranspiration maps from MODIS (250 m) to Landsat (30 m) scales. International journal of remote sensing, 21, 6457-6477. https://dx.doi.org/10.1080/01431161.2010.512929

Kaffash, M., & Sanaei-Nejad, S. H. (2020). Fusion of MODIS and Landsat-8 Land Surface Temperature Images Using Spatio-Temporal Image Fusion Model. Iranian Journal of Soil and Water Research, 51 (3), 763-773. https://dx.doi.org/10.22059/IJSWR.2019.291016.668360 [in Persian]

Karimi, A., Farhadi Bansouleh, B., & Hesadi, H. (2012). Estimation of Regional Evapotranspiration Using LANDSAT TM Images and SEBAL Algorithm. Iranian Journal of Irrigation and Drainage, 6(4), 353-364. https://www.magiran.com/paper/1133915 [in Persian]
Li, Y.u., Cui, J. Y., Zhang, T. H., & Zhao. H. L. (2003). Measurement of evapotranspiration of irrigated spring wheat and maize in a semi-arid region of north China. Agricultural water management, 61, 1-12. http://www.sciencedirect.com/science/article/pii/S0378-3774(02)00177-4
Mokhtari, M. H. (2005). Agricultural drought impact assessment using remote sensing: A case study Borkhar district – Iran (M.Sc. Thesis), ITC, Enschede, the Netherlands.                                             https://webapps.itc.utwente.nl/librarywww/papers_2006/msc/nrm/mokhtari.pdf
Rajeshwari, A., & Mani, N.D. (2014). Estimation of land surface temperature of Dindigul district using Landsat 8 data. International Journal of Research in Engineering and Technology, 3(5), 122-126. https://dx.doi.org/10.15623/ijret.2014.0305025
Ramesh, S. K., Senay, G. B., Velpuri, N. M., Bohms, S., & Verdin, J.P. (2014). On the downscaling of actual evapotranspiration maps based on combination of MODIS and Landsat-based actual evapotranspiration estimates. Remote Sensing, 6, 10483- 10509. https://dx.doi.org/10.3390/rs61110483
Salehi, H., Shamsoddini, A., & Mirlatifi, S. M. (2018). MODIS image downscaling using STARFM and SADFAT algorithms for daily Landsat-like spatial resolution evapotranspiration mapping. Iranian Jpurnal of Remote Sensing & GIS, 10 (3), 123-140. https://gisj.sbu.ac.ir/article_96580.html [in Persian]
Simaie, E., Homaee, M., & Norouzi, A.A. (2013). Evaluating SEBAL model to estimate evapotranspiration using MODIS and TM sensors data. Journal of Water and Soil Resources Conservation, 2 (4), 29-49. https://dx.doi.org/20.1001.1.22517480.1392.2.4.3.8 [in Persian]
Sobrino, J. A., Jiménez-Muñoz, J. C. & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90, 434- 440.                                              https://dx.doi.org/10.1016/j.rse.2004.02.003
Varvani. H., Farhadi Bansouleh, B., & Sharifi, M.A. (2019). Integration of Landsat 8 satellite images and MODIS sensor to estimate the water requirement of maize during the growth period (Case study: Mahidasht, Kermanshah province). Iran - Water Resources Research, 15(1), 257-266. http://www.iwrr.ir/article_80070.html [in Persian]
Weng, Q., Lu, D. & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote sensing of Environment, 89, 467-483. https://dx.doi.org/10.1016/j.rse.2003.11.005
Yaghobzade, M., Izadpanahi, Z., Broomand nasab, S., & Seyed Kaboli, H. (2016). The Comparison of SEBAL Algorithm with SWAP Model and Computational Method to Determine Evapotranspiration. Journal of Irrigation Sciences and Engineering, 39 (3), 39-49. https://dx.doi.org/10.22055/JISE.2016.12341 [in Persian]
Yaghoubi Fashaki, M. (2009). Application of SEBAL method in calculating evapotranspiration using satellite images. MSc Thesis in Irrigation and Drainage, Razi University, Kermanshah, Iran. https://ganj.irandoc.ac.ir/#/articles/b8199d09996ee7b9e2a69489e9b4a378 [in Persian]
Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based actual evapotranspiration estimation. Wiley Interdisciplinary Reviews: Water, 3, 834-853.          https://dx.doi.org/10.1002/wat2.1168